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Foreword

The 51st Annual Iranian Mathematics Conference was held at University of Kashan in cooperation with
the Iranian Mathematical Society from February 15 to February 20, 2021. We were eager to host the
presence of the mathematical community of Iran at University of Kashan, and by providing an intimate
and academic atmosphere for opportunities for exchange and scientific participation for all in the field of
mathematical sciences and their applications. University of Kashan was founded at first as an institution
of higher education in 1973. It began its activities in October, 1974 by 200 students of mathematics and
physics.

Being in a suitable geographical position, the cultural atmosphere of the region and the long history
in science and art have provided the basis for great success for this university and now, for example,
University of Kashan has been introduced as the seventh comprehensive university in Iran by ISC National
University Ranking.

The Faculty of Mathematical Sciences of University of Kashan is active with nearly forty full-time
faculty members in three levels of bachelor’s, master’s and doctoral degrees and has made a significant
contribution to the development and achievements of University of Kashan.

Holding successful conferences, student competitions of the Iranian Mathematical Society and various
specialized seminars have been among the activities of this faculty. The editor in chief of the “Bulletin
of the Iranian Mathematical Society” and the “Journal of Mathematical Culture and Thought” by the
faculty members of this faculty at various times, are some of the effective collaborations with the Iranian
Mathematical Society.

Due to the outbreak of the Corona virus, the 51st Iranian Mathematical Conference is being held
virtually in University of Kashan for the first time.Besides the limitations created by holding the confer-
ence virtually, new opportunities have emerged. We had the great opportunity by using the facilities of
cyberspace to invite prominent national and international professors from 22 different countries.

You are all aware that due to various reasons and problems in the educational, economic and social
dimensions, the number of mathematics students has decreased significantly in recent years.

The elites of the country, have emphasized on strengthening the basic sciences, especially mathematics,
and have introduced them as a treasure for the development of the country. It is up to the Iranian
Mathematical Society to use the opportunity and the support the authorities, to plan for the promotion
and expansion of mathematics.

As a step towards taking responsibility for this, we added a new section to the conference this year
called “Mathematical Promotion”. This idea was welcomed by the esteemed officials of the Iranian Math-
ematical Society and it is hoped that it will be followed as part of the conference in the coming years. In
this regard, with the help of the education department of the region, a call was made and so far we have
received more than 400 articles, from interested students in different levels of elementary and high school
from all over the country.

It was decided to hold the first meeting for the promotion and popularization of mathematics as part
of the mathematics conference in the near future and to present the selected works.

I consider it necessary to thank the Ministry of Science, Research and Technology, esteemed officials
of University of Kashan, dear colleagues in the Faculty of Mathematical Sciences of the University of
Kashan, faculty members of universities and research centers across the country who helped and guided
us in particular those who contributed to the accurate judging of the received papers.

I would like to thank all the participants who added value by sending valuable papers and participating
in the conference. Holding a conference like Iranian Mathematics Conference virtually was a new experience
for us. I hope we have been able to do this great event well and in a desirable and worthy way. Moreover,
this will be an experience for the expansion of virtual activities in the future. I apologize in advance for all
the shortcomings, which were mainly due to our lack of experience in holding such conferences and virtual
activities.

Hoping to see you at the future conferences.

Hassan Daghigh
Conference Chair
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ABSTRACT. Ideal approximation theory is a gentle generalization of the classical approximation
theory and deals with morphisms and ideals instead of objects and subcategories. Our aim in
this presentation is to study ideal approximation theory over n-exact categories. In particular,
the higher version of the notions such as ideal cotorsion pairs, phantom ideals, Salce’s Lemma
and Wakamatsu’s Lemma for ideals will be introduced and studied. The main source of n-exact
categories are n-cluster tilting subcategories of exact categories.
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1. Introduction

The starting point of approximation theory is the discovery of the existence of injec-
tive envelopes by Baer in 1940. Approximation theory, that is approximation of com-
plicated objects of a category by simpler objects in a specific subcategory, is essen-
tially based on the notions of preenvelopes and precovers. Recall that a class .% of R-
modules is precovering if for every R-module M, there exists a morphism ¢ : F' — M
with F' € .# such that the induced morphism Hompg(F’, F') — Hompg(F", M) is sur-
jective, for all F’ € .#. Dually the notion of preenveloping classes is defined. An
important problem in this context is to investigate whether a class of modules is
(pre) enveloping or/and (pre)covering.

Approximation theory also plays a central role in the representation theory of
algebras under the name of left approximations (preenvelopings) and right approxi-
mations (precoverings). For a good account on approximation theory see the mono-
graph [5].

A nice generalization of the classical approximation theory, known as ideal ap-
proximation theory is studied systematically in [4] and [6], that gives morphisms
and ideals of categories equal importance as objects and subcategories. In this the-
ory, the role of the objects and subcategories in classical approximation theory is
replaced by morphisms and ideals of the category. An ideal of a category is an
additive subfunctor of the Hom functor, which is closed under compositions by mor-
phisms from left and right. For instance, the phantom ideal and phantom cover in
module category are studied extensively.

On the other hand, in a successful attempt to build up a higher version of Aus-
lander’s correspondence and also generalizing the classical theory of almost split
sequences of Auslander-Reiten, Iyama [7, 8] introduced the notion of n-cluster tilt-
ing subcategories, where n is an integer greater or equal than 1. Soon it is realized
that these subcategories play a crucial role in the theory and so cluster tilting sub-
categories became the subject of several researches.
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In particular, study of the structure of such subcategories leads Jasso [9] to
a higher version of the classical homological algebra and as a consequence new
notions such as n-abelian and n-exact categories were born. These notions provide
appropriate higher versions of the classical abelian and exact categories, in the sense
that 1-abelian and l-exact categories are the usual abelian and exact categories.
Instead of the usual kernels and cokernels, resp. inflations and deflations, in these
categories we have the notions of n-kernels and n-cokernels and the role of short
exact sequences, resp. conflations, are played by exact complexes with n + 2 terms.

Following these ideas, the general goal of this presentation is to introduce ideal
approximation theory into the higher homological algebra. Our results show that
the correct context in which to carry these arguments out is that of an n-cluster
tilting subcategory of an exact category. By [9, §4] we know that these subcategories
are n-exact, i.e. with ‘admissible’ sequences with n + 2 terms as conflations. Using
this structure, a ‘higher ideal approximation theory’ is developed. We state and
prove some foundational results in this subject to motivate the theory.

2. Main Results

Let us begin with some basic facts and backgrounds we need throughout. We are
mainly work in an exact category (7, &), where o7 is an additive category and &
is the class of conflations, see [2].

Let n > 1 be a fixed integer. The notion of n-exact categories is defined by
Jasso in [9, §4] as a natural generalization of exact categories. Let € be an additive
category. Let f0: X% — X! be a morphism in €. An n-cokernel of f° is a sequence

1 n
xtLoxr oy xn I
of morphisms in % such that for every X € % the induced sequence

n 1 0
0 — g™, x) L5 I g xt X)) IS g (X0, X)),

of abelian groups is exact. Here and throughout we write € (—,—) instead of
Homg (—, —). We denote the n-cokernel of f° by (f!, f%,..., f*). The notion of
n-kernel of a morphism f : X™ — X! is defined similarly, or rather dually.

A sequence X° Loxt e x I xm objects and morphisms in
%, is called n-exact [9, Definitions 2.2, 2.4] if (f°, f1,..., f*!) is an n-kernel of f"
and (f', f%,..., f") is an n-cokernel of f°. An n-exact sequence like the above one,
usually will be denoted by

OfO 1 fl 2 nfn n+1
X' — X — X — . — X" X"

An n-exact structure on % is a class 2~ of n-exact sequences, called 2 -admissible
n-exact sequences, that satisfies axioms of Definition 4.2 of [9]. An n-exact category
is a pair (¢, Z"), where € is an additive category and 2" is an n-exact structure
on % .

Typical examples of n-exact categories are n-cluster tilting subcategories of exact
categories, see [9, Theorem 4.14].
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DEFINITION 2.1. [9, Definition 4.13] Let (<7, &) be a small exact category. A
subcategory € of & is called an n-cluster tilting subcategory if it satisfies the
following conditions.

i) For every object A € &7, there exists an admissible monomorphism A — C,
which is also a left €-approximation of A.
ii) For every object A € o7, there exists an admissible epimorphism C" — A,
which is also a right @-approximation of A.
iii) There exists equalities €1 = ¢ = 1%, where

¢t ={Ac o Exti(C,A)=0forall C € € and all 1 <i<n—1},
g ={Ac o Exte(A,C)=0forall C € ¥ andall 1 <i<n-—1}.

For a detailed explanation of the notion of Ext in exact categories see Subsection
6.2 of [3].

DEFINITION 2.2. Let o/ be an additive category. A two sided ideal .# of & is
a subfunctor
(=, =) AP X o — b,
of the bifunctor o/ (—, —) that associates to every pair A and A’ of objects in &7 a
subgroup ¥ (A, A’) C o/ (A, A’) such that
) If fe J(AA)and g e (A, C), then gf € F(A,C),
i) If fe /(A A") and g € &/ (D, A), then fge (D, A).

Let .# be an ideal of o/ and A € &/ be an object of &/. An .Z-precover of A is

a morphism C' - A in .# such that any other morphism C” #y Ain # factors
through ¢, i.e. there exists a morphism @ : C" — C such that oy = ¢/. & is
called a precovering ideal if every object A € & admits an .#-precover. The notions
of #-preenvelope and preenveloping ideals are defined dually. See [4] for definitions
and details.

Let .Z be a sub-bifunctor of Ext'(—,—). By [4, page 759], a morphism
f:X — Ain % is called .7 -projective if for every object B in ¢, % (f, B) = 0. In
other words, f: X — A in € is #-projective if the n-pullback of any .#-admissible
n-exact sequence along f is contractible. An object A in % is called .%-projective
if the identity morphism is an .%-projective morphism. The ideal of .%#-projective
morphisms is denoted by .Z-proj. The notions of .%-injective morphisms and .%-
injective objects are defined dually. The ideal of .#-injective morphisms is denoted
by #-inj.

These notions form the basics of ideal approximation theory. Another important
notion in this context, is the notion of phantom ideals and phantom cover that are
studied extensively by Herzog in [6].

We study these notions in an n-cluster tilting subcategory of an n-exact category.
For instance higher phantom morphisms are defined as follows.

DEFINITION 2.3. Let € be an n-cluster tilting subcategory of an exact category
(7, &) with n-exact structure 2. Let .# be a sub-bifunctor of Exty-(—,—). A
morphism ¢ in % is called an n-.%-phantom morphism if the n-pullback of every
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Z -admissible n-exact sequence along ¢ is an .#-admissible n-exact sequence. In
other words, ¢ : X — A in € is an n-.%-phantom morphism if for every object A’
in ¢, the morphism

Ext"(p, A') : Ext™(A, A") — Ext™(X, A"),

of abelian groups takes values in the subgroup . (X, A’). We denote the collection
of all n-%-phantom morphisms by ®(.%). Note that it is easy to see that ®(.F)
forms an ideal of %

Based on such definitions, we study higher cotorsion ideals, higher Salce’s Lemma
and Wakamatsu’s Lemma, all are pillars of classical approximation theory. For
example, a higher version of Wakamatsu’s Lemma can be stated as follows.

THEOREM 2.4. Let (¢, Z") be an n-cluster tilting subcategory of an exact cate-
gory (&, &) with enough Z -injective objects. Let & be an ideal of € which is left
closed under n-extensions by objects in . Let A be an object of € andi:1 — A
be the .7 -cover of A. Then for every X € &, there exists the exact sequence

0 — Ext"(X, K,) — Ext"(X,K,—1) — - — Ext"(X, K;) — 0,

of abelian groups, where K,, — K,,_1 — -+ — Ky 1s an n-kernel of i.
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ABSTRACT. We introduce profinite polyadic groups as the n-ary generalizations of a the ordinary
profinite groups. The structure of such profinite systems will be investigated and we will show
that a topological polyadic group (G, f) is profinite, if and only if, it is compact, Hausdorff,
totally disconnected and for every open congruent R, the quotient G/R is finite.
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1. Introduction

In this talk, we introduce the class of the profinite polyadic groups: polyadic groups
which are the inverse limit of a system of finite polyadic groups. A polyadic group
is a natural generalization of the concept of group to the case, where the binary
operation of group replaced with an n-ary associative operation, one variable linear
equations in which have unique solutions. So, polyadic group means an n-ary group
for a fixed natural number n > 2. These interesting algebraic objects are introduced
by Kasner and Dornte ([1, 2]) and studied extensively by Emil Post during the first
decades of the last century, [3]. During decades, many articles are published on the
structure of polyadic groups. It is easy to define topological polyadic groups, and so,
one can ask which topological polyadic groups are profinite. In this talk, we discuss
this problem and as the main result, we show that a topological polyadic group
(G, f) is profinite, if and only if, it is compact, Hausdorff, totally disconnected and
for every open congruent R, the quotient G/R is finite.

1.1. Polyadic Groups. A polyadic group is a pair (G, f), where G is a non-
empty set and f : G™ — G is an n-ary operation, such that

i) the operation is associative, i.e.

F@ P2t = fl T fafh e,
for any 1 <7 < j <mnand for all z1,...,29, 1 € G, and

ii) for all aq,...,a,,b € G and 1 < i < n, there exists a unique element x € G
such that

flay ! @, afyy) = 0.
Note that, here we use the compact notation xf for every sequence x;, xij1, ..., 7;
of elements in GG, and in the special case when all terms of this sequence are equal

to a fixed x, we denote it by (:J?, where t is the number of terms.

Clearly, the case n = 2 is exactly the definition of ordinary groups. Note that an
n-ary system (G, f) of the form f(a}) = x129...2,b, where (G,-) is a group and b
a fixed element belonging to the center of (G, -), is a polyadic group, which is called
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b-derived from the group (G, -) and it is denoted by der; (G, -). In the case when b is
the identity of (G, -), we say that such a polyadic group is reduced to the group (G, -)
or deriwed from (G,-) and we use the notation der"(G,-) for it. For every n > 2,
there are n-ary groups which are not derived from any group.

Suppose (G, f) is a polyadic group and a € G is a fixed element. Define a binary
operation

(n—2)
rxy=f(z, a y).
Then (G, *) is an ordinary group, called the retract of (G, f) over a. Such a retract
will be denoted by ret,(G, f). All retracts of a polyadic group are isomorphic. The
identity of the group (G, x*) is @. One can verify that the inverse element to x has
the form
y=f(@ "z, %,3).

One of the most fundamental theorems of polyadic group is the following, now
known as Hosszi -Gloskin’s theorem. We will use it frequently to determine the
connections between the polyadic and ordinary profinite groups. According to this
theorem, for any polyadic group (G, f), there exists an ordinary group (G,-), an
automorphism 6 of (G, -) and an element b € G such that

1) 0(b) = b,
2) 0" Y(x) = baxb~L, for every x € G,
3) f(zh) = 210(x9)0*(x3) - - - 0" (x,)b, for all xq,...,z, € G.

Because of this, we use the notation dery; (G, e) for (G, f) and we say that (G, f)
is (6, b)-derived from the group (G, -).

2. Main Results

A profinite polyadic group is the inverse limit of an inverse system of finite polyadic
groups. More precisely, let (I,<) be a directed set and suppose

{(Gy, fi), ij, I} is an inverse system of finite polyadic groups. This means that for
every pair (i,7) of elements of I with j < i, we are given a polyadic homomorphism

wij - (Gi, fi) = (Gy, £j),
such that the equality ¢;rpi; = @i, holds for all £ < j <. Now, assume that
(G7 f) = QQ(Gn fi)'

Then (G, f) is called a profinite polyadic group. Note that as each G; is finite, being
a closed subspace of the direct product of a family of finite sets, (G, f) is compact,
Hausdorff, and totally disconnected topological polyadic group.

Recall that, according to Hosszi -Gloskin’s theorem, we have (G, f;) =
derp, i, (G, ®;), for some ordinary group (G;,e;), an element b; € G;, and an au-
tomorphism #;. We will prove that in some sense, there exists a binary operation e
on G such that
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This shows that the group (G, e) is profinite. Our main result is a characteriza-
tion of the profinite polyadic groups. Here is the main theorem of this work.

THEOREM 2.1. Let (G, f) be a polyadic group. Then (G, f) is profinite, if and
only if, it is compact, Hausdorff, totally disconnected, and for every open congruent
R C G x G, the polyadic group G/R is finite.
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ABSTRACT. In this talk, we will consider the Birkhoff sums f(n,z,h), where f is a continuous
function with zero average on the unit circle, generated by irrational rotation. We show that the
unique boundary condition of growth rate of sequence max f(n,z, h) for n — oo, if the average
of the Birkhoff sums, i.e. %f(n, z, h) is approaching to zero.

Keywords: Birkhoff sums, Irrational rotation, Resolvent, Weighted shift operator.
AMS Mathematical Subject Classification [2010]: 47B37, 34C29.

1. Introduction

Let X be a compact topological space and o : X — X be a continuous invertable
map. This kind of maps generate a dynamical systems (cascades)suchas : o(z) =
a(a*Yz)), k € Z. For f : X — C and n € Z, the Birkhoff sums f(n,z) is
represented by

(ZZ;S (aF(x)) for n > 0,

(1) f(n,2) = f(n,z,a) = ¢ 0 for n =0,

[~ X, f(eM(@) = = f(=n;a™(z))  for n < 0.

Particularly, the behavior of the Birkhoff sums is related to ergodic theorem, this
fact is shown in the next discussion:

Let PM,(X) be a set of probability Borel measures in X, which invariant rela-
tively to a. The Birkhoff’s ergodic theorem says, if 4 € PM,(X) and f € Li(X, p),
then the limit of the Birkhoff average exist, u-almost everywhere (see [6]). In case
of continuous functions, the following result presented:

THEOREM 1.1. [5] If X be a compact topological space, o : X — X be a contin-
uous map and f € C(X), then

lim max %f(n,x,a) = max{/X fx)dp : pe PM,(X)},

n—o0

*Speaker
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1
lim min —f(n, z, o) = min{/ f(x)dp: pe PM,(X)}.
n—oco X N X
Moreover, the map « is called strictly ergodic, if there exist only one invariant
probability measure . From Theorem 1.1, follows that the following convergent,
where f € C'(X) holds:

) lim - fnin) = [ fla)d
3) liw o —f(nia) = [ J(o)dn

In the present work, we will provide a detailed description about the convergence
of (2) and (3). The estimates of powers of operators generated by irrational are
given.

2. Main Results

Let T = R/Z be the unit circle and the map © — = + h generates the rotation
such that ay: T'— T with angle 27h, where h is irrational number. For a function
f € C(T) the Birkhoff sums f(n,z, h) is represented by

(f(x)+ flx+h)+-+ flz+ (n—1)h) for n > 0,

f(n,z;h) =<0 for n =0,

\—[f(x —h) + f(x —2h) + -+ f(x —nh)] forn <0

THEOREM 2.1. [3] Let h be irrational number. For any sequence of numbers
0n, which monotonic converge to zero, there exist a continuous function ¢ with zero
average such that Birkhoff sums f(n,h, @) is growing such as faster than

f(nv h: (20) 2 NOp.

THEOREM 2.2. [3] Let ¢ be a continuous function with zero average, which is
not trigonometrical polynomial. For any monotonic converge to zero o,, there exist
an irrational number h, such that f(ng, h,p) is growing such as faster than

f(nk7 hv 90) Z NEOny, -
If ¢ is smooth, then f(qx, h,¢) is bounded.

The proof was based on some facts of number theory and ergodic theory in [3].

3. Estimate of Powers of Weighted Shift Operator
An operator T, acting on C(S') by formula

Tyu(z) = u(y(2)),

12
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is called a rotation operator. For any a € C(S'), the operator acting by formula
(4) (aThu)(x) = a(z)u(z + h),
is called a weighted shift operator generated by rotation and it is norm of the powers

is given by

n—1

(i) | = max [T la(x + ).

J=0

In the following, we denote by o(T") the spectrum of a bounded operator 7" :
F — F on a Banach space F' and by r(7T) the spectral radius. From Gelfand’s
formula follows that the spectral radius can be calculated by norm of the powers of
operator T, such that

r(T) = lim || T7||".
n—roo
Howeover, the behavior of the resolvent (T'— AI)~! depends on the growth rate

of the powers of operator. On the relation between ||T"|| and ||(T — A\I)~!|| we refer
to [4, 7).

THEOREM 3.1. [1] Let aT}, be a weighted shift operator generated by:
1) If b is a rational number, i.e. h =: {, N # 0, — some fractions, then

N-1

_ . N _ Jjm
o(aTy) ={\: 3z € X, A —jl})a(a:—l—ﬁ)}.
As well as
N-1 im
R(aTy) = [mwax jl:[o la(x + W)HW

2) If h is irrational number and a(x) # 0 for all z, then o(aTy) = {\ : |\ =
®(a)}, where ®(a) is the geometric average of a, i.e.

(5) O(a) = exp[/o In |a(x)|dx].
In particular, R(aT},) = ®(a).

Moreover, we assume that the spectral radius in (5) is equal to 1, so, if ¢(x) =
In|a(z)|, then

(© [ ew=0

n—1

1

- In |[[aTh]"|| — 0 and In ||[aT}]"|| = maxz o(z + jh).
=0

13
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THEOREM 3.2. [2] Let p(x) be not trigonometrical polynomial and it satisfies
condition (6). For any sequence w, such that “> — 0, there exists irrational number
h, such that for some subsequence n; holds

[faTu]™ || = ™.

In what follows, we consider a special kind of irrational numbers defined by:

C
o7 Ym €N > M},
THEOREM 3.3. Let h € A,, where 0 > 0 and let the operator (4) satisfies (6)
and |a] € C™(SY). If m > o + 3, then the sequence of power operator (4) aTj, is
bounded.

A, ={h € R:3C, M, such that |h—%|

Proof. For h € A, satisfies

M,
|h = _‘ = f2+o’
which equal to
|kh —p| > k1+0
Thus,
1+U
|1 — e2nkh| = < Mylk|

Due to the condition |a(z)| > 0, we have ¢(x) = In|a(z)| and |a(x)| belongs to
C™(S"). Therefore the Fourier Coefficient of |(a(x))| hold

Ms

C
|Gkl < |k|m 1

Thus, for Fourier Coefficient of function ¢, (z) we have

1— ei27rknh 1

|C | < |Ck | < MM

1 — ei2rkh 1 — ei2mkh ’k’m72fa’
which does not depend on n.

Ifm-—2—0>1, then

D i
> e
convergent.

Therefore
1
max|g0n( )| < M2M3Z =
k0

14
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ABSTRACT. A gyrogroup is a non-associative algebraic structure, which is a natural generaliza-
tion of a group, arising from the study of the parametrization of the Lorentz transformation
group by Abraham A. Ungar. Gyrogroups share many properties with groups and, in fact, every
group may be viewed as a gyrogroup with trivial gyroautomorphisms. In this talk, we indicate
strong connections between gyrogroups and classical structures such as groups, linear spaces,
topological spaces, and metric spaces from the algebraic point of view.

Keywords: Gyrogroup, Gyrogroup action, Representation of gyrogroup, Topological
gyrogroup, Gyronorm.

AMS Mathematical Subject Classification [2010]: 20N05.

1. Introduction

Roughly speaking, a gyrogroup (also called a Bol loop with the A,-property) is a
non-associative group-like structure that shares many properties with groups. One
of the most important examples of gyrogroups is the complex Mdbius gyrogroup,
which consists of the complex open unit disk D = {z € C: |z| < 1} and Mdébius
addition @) defined by
a+b
1+ab’
It is not difficult to check that Mébius addition is not associative so that (D, @)
does not form a group. However, it has several properties like groups, which even-
tually motivate the notion of a gyrogroup. In the following definition, we present
an abstract version of the axioms of being a gyrogroup.

Denote by Aut(G) the group of automorphisms of (G, @), where G is a non-
empty set and @ is a binary operation on G.

a®yb= for all a,b € D.

DEFINITION 1.1 (Gyrogroups). A non-empty set GG, together with a binary op-
eration @ on G, is called a gyrogroup if it satisfies the following properties.

(G1) There exists an element e € G such that e @ a = a for all a € G. (identity)
(G2) For each a € G, there exists an element b € G such that b @ a = e.(inverse)
(G3) For all a, b € G, there is an automorphism gyr[a, b] € Aut(G) such that

a® (bdc)=(a®b) D gyr|a,bc,

for all c € G. (left gyroassociative law)
(G4) For all a, b € G, gyr[a ® b,b] = gyr[a, b]. (left loop property)

It can be proved that every gyrogroup has a unique two-sided identity, denoted
by e and that any element a of a gyrogroup has a unique two-sided inverse, denoted
by ©a. The automorphism gyr|a,b] is called the gyroautomorphism generated by
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a and b. The gyroautomorphisms play a fundamental role in gyrogroup theory, as
they come to remedy the absence of associativity in gyrogroups and lead to the
gyroassociative law, a weak form of the associative law. In fact, any group can
be made into a gyrogroup by defining the gyroautomorphisms to be the identity
automorphism and, conversely, any gyrogroup with trivial gyroautomorphisms is a
group. From this point of view, the notion of gyrogroups suitably generalizes that
of groups. A gyrogroup that satisfies a commutative-like law,

a®b=gyr[a,b](b® a), for all elements a, b,

is called a gyrocommutative gyrogroup, in order to emphasize similarity of an abelian
group.

2. Gyrogroups and Related Structures

2.1. Groups and Gyrogroups. Gyrogroups and groups are related in various
ways. For instance, if G is a gyrogroup, then the symmetric group of GG, denoted
by Sym(G), admits the gyrogroup structure and G can be embedded as a twisted
subgroup of Sym(G) via the embedding a +— L,,a € G, where L, is the left gy-
rotranslation defined by L,(x) = a @ « for all z € G. One of the most important
equations that connects group and gyrogroup operations is the following composition
law,

Lq o Ly = Lagy 0 gyr|a, b],
which is an abstract version of the composition law of Lorentz boosts as well as
Mobius translations.

Another strong connection between groups and gyrogroups, which provides the
machinery for studying gyrogroups via group theory, is shown in the next theorem.
Recall that a subset B of a group I' is a twisted subgroup of I' if the following
properties hold: (i) 1 € B, 1 being the identity of T'; (ii) if b € B, then b~! € B; and
(iii) if a, b € B, then aba € B [3]. Recall also that a subset B of a group I' is a (left)
transversal to a subgroup = of I' if each element g of I' can be written uniquely as
g = bh for some b € B and h € Z [4]. Let B be a transversal to a subgroup = in a
group I'. Given two elements a and b of B, define a © b to be the unique element of
B arising from the product ab in I'. Therefore, any transversal B to = gives rise to
a binary operation ©® on B, called the transversal operation.

DEFINITION 2.1. [6, Gyrotriples| Let I" be a group, let B be a subset of I, and
let = be a subgroup of I'. A triple (I', B, Z) is called a gyrotriple if the following
properties hold:

(i) B is a transversal to = in I
(ii) B is a twisted subgroup of I';
(ili) Z normalizes B, that is, hBh™! C B for all h € .

THEOREM 2.2. [6, Section 2.1] If G is a gyrogroup, then there exists a group
S containing an isomorphic copy G of G such that (2, G,Aut(G)) is a gyrotriple.
Conversely, if (I', B, Z) is a gyrotriple, then B equipped with the transversal operation
1S a gYrogroup.
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2.2. Gyrogroup Actions and Gyrogroup Representations. Viewing a
group action as a homomorphism, we can extend the notion of group actions to
the case of gyrogroups in a natural way. Let G be a gyrogroup and let X be a
non-empty set. A function from G x X to X, written (a,x) — a - x, is a gyrogroup
action of G on X if the following properties hold:

(i) e-x =z for all x € X;

(i) a-(b-x)=(a®b)-x forall a,b € G,z € X.

As proved in [5], every gyrogroup action of G on X induces a gyrogroup homomor-
phism from G to Sym(X) and vice versa. This leads to the notion of permutation
representations of a gyrogroup. Several results in the theory of group actions remain
true in the case of gyrogroups, including the orbit-stabilizer theorem [5, Theorem
3.9], the orbit decomposition theorem [5, Theorem 3.10], and the Burnside lemma—
also known as the Cauchy-Frobenius lemma [5, Theorem 3.11].

Imposing the linear structure on the set X acted by a gyrogroup enables us to
study linear representations of G on the linear space X in the same way as one studies
linear representations of groups. This method allows us to examine the structure of
a gyrogroup, using tools from linear algebra. Let G be a gyrogroup and let V' be
a linear space. A gyrogroup action of G on V is said to be linear if in addition for
each a € G, the map defined by v +— a -v,v € V, is a linear transformation on V.
As proved in [8], every linear action of a gyrogroup G on a linear space V' induces
a gyrogroup homomorphism from G to GL(V') and vice versa, where GL(V) is the
general linear group of V. Several classical theorems are extended to the case of
gyrogroups, including Schur’s lemma [8, Theorem 3.13] and Maschke’s theorem [8,
Theorem 3.2].

2.3. Topological Gyrogroups. In 2017, W. Atiponrat introduced the notion
of topological gyrogroups, which is motivated by well-known concrete gyrogroups
such as Euclidean Einstein gyrogroups and Mobius gyrogroups [1]. A gyrogroup
G equipped with a topology is called a topological gyrogroup if (i) the gyroaddition
map @®: (z,y) — x @y is jointly continuous and (ii) the inversion map &: z +— oz
is continuous, where G x G carries the product topology. Let (G, 7) be a topological
gyrogroup and let H(G) be the group of homeomorphisms of G. In the case when 7
possesses a nice property and H(G) is endowed with a suitable topology, we obtain
a topological version of Cayley’s theorem, as shown in the following theorem:

THEOREM 2.3. [9, Theorem 3.4] Let G be a locally compact Hausdorff topological
gyrogroup and suppose that H(G) carries the g-topology. Then H(G) is a completely
reqular topological group and G is embedded into H(G) as a twisted subgroup via the
topological embedding a — L,,a € G.

Here, the g-topology on H(G) is the topology generated by the subbase
{[C,0]: C is closed in G, O is open in G, and C or X \ O is compact},
where [A, B] = {f € H(G): f(A) C B}.

A topological gyrogroup G is said to be strong if there exists an open base U at
the identity e of G such that gyr[a,b](U) = U for all a,b € G,U € U [2]. Several
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results that are true for topological groups can be extended to the case of strongly
topological gyrogroups. Among other things, we obtain the following theorem:

THEOREM 2.4. [10, Proposition 5] Every strongly topological gyrogroup G can
be embedded as a closed subgyrogroup of a path-connected and locally path-connected
topological gyrogroup G®. Furthermore, gyrocommutativity, first countability, and
metrizability are shared by G and G*°.

2.4. Normed Gyrogroups. Recall that the most standard metric on groups
is the word metric (with respect to some generating set), which allows us to study
a (finitely generated) group as a geometric object. Groups with word metric fall in
the category of normed groups. This inspires us to define a normed gyrogroup.

DEFINITION 2.5. [7, Gyronorms| Let G be a gyrogroup. A function ||-|: G — R
is called a gyronorm on G if the following properties hold:
i) ||z|| > 0 for all z € G and ||z|| = 0 if and only if x = e; (positivity)
ii) || ©z|| = ||z| for all z € G; (invariant under taking inverses)
iii) ||z @ y|| < ||lz]| + [ly|| for all z,y € G; (subadditivity)
iv) |lgyr[a,blz|| = ||z|| for all a,b,z € G. (invariant under gyrations)

Any gyrogroup with a specific gyronorm is called a normed gyrogroup.

Let (G, ] -||) be a normed gyrogroup. Then the function d: G x G — R defined
by

d(z,y) = exoyl,  foralzyed,

is a metric on G, called a gyronorm metric, and so (G, d) becomes a metric space. We
emphasize that a normed gyrogroup need not be a topological gyrogroup. Therefore,
sufficient conditions for a normed gyrogroup to be a topological gyrogroup are worth
finding. We present a few conditions below.

THEOREM 2.6. [7, Theorem 11| Let G' be a normed gyrogroup with the corre-
sponding metric d. If one of the following conditions holds, then G is a topological
gyrogroup with respect to the topology induced by d:

1) Right-gyrotranslation inequality: d(x ® a,y®a) < d(z,y) for all a,x,y € G;
2) Klee’s condition: d(x @ y,a ®b) < d(z,a) + d(y,b) for all a,b,z,y € G.

THEOREM 2.7. [10, Theorem 15] Let G be a normed gyrogroup with the corre-
sponding metric d. If every right gyrotranslation R,: v — x @ a,x € G, and the
inversion function © are continuous, then G is a topological gyrogroup with respect
to the topology induced by d.
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ABSTRACT. We observe that fullerene graphs are one-skeletons of polytopes which can be realized
in a hyperbolic 3-dimensional space with all dihedral angles equal to /2. We are referring
volume of such polytope as a hyperbolic volume of a fullerene. We demonstrate that hyperbolic
volumes of fullerenes correlate with few important topological indices and can serve as a chemical
descriptor for fullerenes.
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1. Introduction

A fullerene is a spherically shaped molecule consisting of carbon atoms in which
every carbon ring is a pentagon or a hexagon. Every atom of a fullerene has bounds
with exactly three neighboring atoms. The molecule may be a hollow sphere, ellip-
soid, tube, or many other shapes and sizes. Fullerenes are the subjects of intensive
research in chemistry, and they have found promising technological applications,
especially in nanotechnology and material sciences.

Molecular graphs of fullerenes are called fullerene graphs. A fullerene graph is
a 3-connected planar graph in which every vertex has degree 3, and every face is
pentagonal or hexagonal. By Euler’s polygonal formula, the number of pentagonal
faces is always 12, and the total number f of faces in fullerene graph with n vertices
is equal to n/2 + 2. It is known that fullerene graphs having n vertices exist for
n = 20 and for all even n > 24. The number of all non-isomorphic fullerene graphs
C,, for many values of n can be found in [2]. Fullerenes without adjacent pentagons,
i.e., each pentagon is surrounded only by hexagons, satisfy the isolated pentagon
rule (IPR), and are called IPR fullerene graphs.

Mathematical studies of fullerenes include applications of topological and graph
theory methods, information theory approached, design of combinatorial and com-
putational algorithms, etc.

In the present talk we will discuss a new point of views on fullerenes based on

non-Euclidean geometry of corresponding polytopes. The talk is based on papers [4,
5, 6].

2. Fullerenes as Hyperbolic Polytopes

Let H3 be a 3-dimensional hyperbolic space, i.e, 3-dimensional connected and sim-
ply connected Riemann manifold with constant sectional curvature equals to —1,
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see [7]. Tts conformal Poincare ball model B? is given by the unit ball B® = {z =
(71,29, 73) € R : ||z|| < 1}, where ||z||* = 2% + 23 + 23, with the metric

dz? + dr3 + dx?
(1 = [ [*)?

Geodesics in B? are either line segments through the origin or arcs of circles orthog-
onal to its boundary B3. The totally geodesic subspaces of B3 are the intersections
with B3 of generalized spheres (spheres or hyperplanes) orthogonal to OB3.

A polytope is called acute-angled if all its dihedral angles are at most 7/2. The
following rigidity holds in a 3-dimensional hyperbolic space H?3.

ds®> =4

THEOREM 2.1. [7] A bounded acute-angled polytope in H® is uniquely (up to
isometry) determined by its combinatorial type and dihedral angles.

We say that polyhedron is right-angled if all its dihedral angles equal to w/2. A
connected graph is said to be cyclically k-connected if at least k edges have to be
removed to split it into two connected components both having a cycle.

THEOREM 2.2 (Pogorelov, Andreev). A polyhedral graph is 1-skeleton of a bounded
right-angled hyperbolic polytope if and only if the graph is 3-reqular and cyclically
5-connected.

The combinatorially smallest example of right-angled hyperbolic polytope is a
dodecahedron. The class of right-angled hyperbolic polytopes has many interesting
properties and can be used to construct hyperbolic 3-manifolds by four-coloring
of faces [8, 9]. Topological properties of corresponding 3-manifolds are discussed
in [10]. Observe, that any fullerene graph satisfies Theorem 2.2 and can be realized
as 1-skeleton of a right-angled hyperbolic polytope, see Figure 1 for two isomers of
48-vertex fullerene in H3. By Theorem 2.1 any geometric invariant of its right-angled
realization in H3, for example a volume, can be taken as a fullerene invariant. The
fullerene, presented on the right-hand side in Figure 1, has volume 17.034558, that
is minimal among all Cyg fullerenes, and the fullerene, presented in the right-hand
side in Figure 1, has volume 18.61.7604, that is maximal among all Cyg fullerenes.

FicURE 1. Two isomers of fullerene Cyg as right-angled polytopes in a hyperbolic space.
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Volumes of bounded right-angled hyperbolic polytopes can be estimated by num-
ber of vertices.

THEOREM 2.3. [6] If P is a bounded right-angled hyperbolic polytope with n > 24

vertices, then

5
(n—8)-;}—;<V01(P)<(n—14)-%,

where vg is the volume of a reqular ideal hyperbolic octahedron and vs is the volume
of a reqular ideal hyperbolic tetrahedron.

Constants vg and vy have expressions in terms of the Lobachevsky function

A(z) = —/ log |2 sin t|dt.

0
Namely, vg = 8A(mw/4) and v3 = 2A(7/6). To six decimal places vg is 3.663862, and
vs 1s 1.014941.

3. Wiener Complexity of Fullerene Graphs

The vertex set of a graph G is denoted by V(G). The distance d(u,v) between
vertices u,v € V(G) is the number of edges in a shortest path connecting u and v
in G. By transmission of v € V(G), we means the sum of distances from vertex v

to all other vertices of G,
tr(v) = Z d(u,v).

ueV(G)
Transmissions of vertices are used to design of many distance-based topological
indices. Usually, a topological index is a graph invariant that maps a family of
graphs to a set of numbers such that values of the invariant coincide for isomorphic
graphs. The Wiener index is a topological index defined as follows

1
W@ =Y duv) = 5 > (o).
{uw}CV(G) veV(G)
It was introduced as a structural descriptor for tree-like organic molecules by Harold
Wiener in 1947. The Wiener index that has found important applications in chem-
istry. Various aspects of the theory and practice of the Wiener index of fullerene
graphs are discussed in many works [1]. For other topological indices which are
useful to study fullerenes, see e.g. [3].

The number of different vertex transmissions in a graph G is known as the
Wiener complezity [4] (or the Wiener dimension), Cy (G). This graph invariant
can be regarded as a measure of transmission variety. A graph is called transmission
irreqular if all vertices of the graph have pairwise different transmissions, i.e., it has
the largest possible Wiener complexity. It is obvious that a transmission irregular
graph has the trivial automorphism group.

The computer search of transmission irregular graphs was realized in [4] for
hundreds of millons of graphs.

THEOREM 3.1. [4] There do not exist transmission irreqular fullerene graphs
with n < 232 vertices and IPR fullerene graphs with n < 270 vertices.
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Since the almost all fullerene graphs have no symmetries, we conject that trans-
mission irregular graphs exist for a large number of vertices (when the interval of
possible values of transmissions will be sufficiently large with respect to the number
of vertices).

QUESTION 3.2. Does there exist a transmission irregular fullerene graph (IPR
fullerene graph)? If yes, then what is the order of such graphs?

F1GURE 2. Construction of a nanotubical fullerene with two caps.

Next we consider fullerene graphs with the maximal Wiener index. A class of
fullerene graphs of tubular shapes is called nanotubical fullerene graphs. They have
cylindrical shape with the two ends capped by subgraphs containing six pentagons
and possible some hexagons called caps (see an illustration in Figure 2).

ODeL

F1GURE 3. Pentagonal parts of caps for nanotubical fullerene graphs with the
maximal Wiener index.

It was observed in [4] that if n = 32 or 36 < n < 232, then maximal Wiener
index fullerene with n vertices looks as a nanotube with one of four types of caps
presented in Figure 3. Type (a) appears 21 times, type (b) appears 28 times, type
(c) appears 27 times, and type (d) appears 28 times.

4. Hyperbolic Volume, Topological Indices and Stability of Fullerenes

It is known that topological indices can serve as descriptors for some properties of
chemical compounds. It was shown in [5] that hyperbolic volumes of fullerenes, i.e.,
volumes of right-angled hyperbolic polytopes with fullerenes as 1-skeletons, correlate
with some properties of fullerenes and can be considered as descriptors too. It can
be seen from Figure 4 that there are two isomers of Cgy with the largest volume
coincide with two having the smallest relative energy, and also three isomers of Cy
with the smallest volume coincide with three having the largest relative energy.

Moreover, the observed correlation between hyperbolic volumes and Weiner in-
dices suggest few conjectures about minimal volume polytopes for various classes of
fullerenes. Here we formulate one of them.
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Hyperbolic volume
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FIGURE 4. Scatter chart of volume and relative energy.

Conjecture 4.1. If fullerene with n = 10k, k > 2, carbon atoms has the minimal
hyperbolic volume in the class C,,, then it is a nanotubical fullerene with caps of type

(a).

Numerical computations confirm the conjecture for n < 64.
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1. Introduction

Fuzzy type theory was developed as a counterpart of the classical higher-order logic.
Since the algebra of truth values is no longer a residuated lattice, a specific algebra
called an EQ-algebra was proposed by Novak [4, 5]. The main primitive oper-
ations of F(Q-algebras are meet, multiplication, and fuzzy equality. Implication is
derived from fuzzy equality and it is not a residuation with respect to multiplication.
Consequently, EQ-algebras overlap with residuated lattices but are not identical to
them. Novék and De Baets in [5] introduced various kinds of EFQ-algebras and
they defined the concept of prefilter and filter on EQ-algebras. In studying logical
algebras, filter theory or ideal theory is very important. In [3] and [6], positive im-
plicative, implicative, and fantastic (pre)filters of FQ-algebras were introduced and
studied. In this paper, we introduce a new kind of filter of EQ-algebras and by this,
we construct a residauted EQ-algebra and under some conditions, we construct a
residuated lattice, M'T L-algebra and hoop-algebra.

2. Preliminaries

An EQ-algebra is an algebraic structure £ = (E, A\, ®, ~, 1) of type (2,2,2,0), where
for any a,b,c,d € E, the following statements hold:

(E1) (E, A, 1) is a A-semilattice with top element 1.

(E2) (F,®,1) is a (commutative) monoid and & is isotone with respect to <.
(E3) a~a=1.

(E4) ((anb) ~c)®@(d~a) <c~ (dAD).

(E5) (a~b)®@(c~d) < (a~c)~(b~d).

(E6) (aANDAc)~a< (aNb) ~a.

(E7)a®@b<a~b.

”» N

The operations ” A7, 7 ® 7, and 7 ~ 7 are called meet, multiplication, and fuzzy
equality, respectively. For any a,b € E, we set a < b if and only if a Ab = a and
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we defined the binary operation implication on E by, a — b = (a Ab) ~ a. Also, in
particular 1 - a =1~ a = a. If F contains a bottom element 0, then an unary op-
eration — is defined on £ by —a = a ~ 0. Let £ = (E,\,®,~, 1) be an EQ-algebra.
Then £ is called idempotent if a ® a = a, separated if a ~ b =1 implies a = b, good
if a ~ 1 = a, involutive (IEQ-algebra) it ——a = a, residuated (a @ b) AN ¢ = a ® b if
and only if a A ((bAc¢) ~ b) = a, lattice-ordered EQ-algebra if it has a lattice reduct,
prelinear EQ-algebra if the set {(a — b), (b — a)} has the unique upper bound 1.

An EQ-algebra & has exchange principle condition if for any a,b,c € F,
a— (b—c)=b— (a—c).

Let &€ = (E,A\,®,~,1) be an FQ-algebra and a,b,c € E. A subset ) # F C E is
called
e a prefilterof £, if 1€ Fandifa€ Fanda—bée F,thenb e F,
e an implicative prefilter of £ if 1 € F and ¢ — ((a — b) — a) € F and ¢ € F imply
acF.

A prefilter F' of £ is called a
e filter of £ if a — b € F implies (a®c) = (b®c) € F,
e positive implicative (pre)filter of £ if for any a,b, € E, (a A (a — b)) > b€EF,
e fantastic (pre)filter of £ if for any a,b € E, b — a € F implies ((a — b) — b) —
a€F,
e prelinear (pre)filter of £ if for any a,b,c € F, ((a = b) = ¢) = (((b = a) = ¢) —
c) € F.

THEOREM 2.1. [1] Let F be a filter of EQ-algebra & = (E,\,®,~,1). Then the
binary relation ~p is a congruence relation on & and E/F = (E/F, \p,@p, ~p, F)
is a separated EQ-algebra, where for any a,b € E we have,

[a] A [b] = la A B, [a] ©@p [b] = [a® ], [a] ~p [B] = [a ~ b, [a] =F [b] = [a = b].

REMARK 2.2. [1] Let £ = (E, A\, ®, ~, 1) be a separated EQ-algebra. Then the
singleton subset {1} is a filter of £.

THEOREM 2.3. [3, 6] Let £ = (E,A\,®,~,1) be an EQ-algebra and F be an
implicative (pre)filter of £. Then the following statements hold:

(i) F is a positive implicative.
(i) If € is good, then F' is a fantastic (pre)filter of £.

Notation. In this paper, £ = (E, A\, ®,~, 1) or simply £ is an EQ-algebra from
now on, unless otherwise state.

3. Residuated (Pre)filter of £Q)-Algebras
An EQ-algebra is residuated if for any a,b,c € E, we have
a®b<c ifandonlyif a<b—c

In [1], El-Zekey et al. proved that a separated FQ-algebras is residuated if and only
if for any a,b,c € E we have,

a—>b—c)=(a®b) —c
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Also, they proved that if £ is a good EQ-algebra, then for any a,b,c € E we have,
(1) a— (b—c)<(a®b) —c

But there are some non-residuated EQ-algebras £ such that for any a,b,c € E, we
have

(2) (a®b) »c<a— (b—c).
By this inspiration, we define new types of (pre)filter of EQ-algebras as follows.

DEFINITION 3.1. A (pre)filter is semi-residuated (pre)filter if for any a,b,c € E
we have

(3) (a®@b) = c) = (a— (b—c)) € F.

EXAMPLE 3.2.

(i) Let £ = {0,a,c,d,m,1} be a lattice with a Hesse diagram as Figure 1. For
any x,y € E, we define the operations ® and ~ on E as Table 1 and Table

2.

®|0 a ¢c d m 1 ~|0 a ¢ d m 1

0/0 000 O O 0/l d a a 0 0

al0 a 0 0 a a ald 1 0 0 a a

c|0 0 ¢ ¢ ¢ c cla 01 m d c

d{0 0 ¢c ¢ ¢ d dla 0 m 1 d d

m|0 a ¢ ¢ m m m|0 a d d 1 m

110 a ¢ d m 1 110 a ¢ d m 1
Table 1 Table 2

—10 a ¢ d m 1 1

oO/1 1 1 1 1 1

ald 1l d d 1 1 !

cla a 1 1 1 1 u d

dla a m 1 1 1 c

m|0 a d d 1 1 Y

110 a ¢ d m 1 Figure 1
Table 3

Then £ = (E,A\,®,~,1) is an EQ-algebra and operation — is as Table 3.
By routine calculation, we can see that for any z,y,z € E, (z®y) — 2) —
(x = (y = 2)) = 1. So every (pre)filter of £ is a semi-residuated (pre)filter.
Since € is good, G = {1} is filter of £. But G is not a prelinear filter of £.
Because, ((a - d) - m) — (((d > a) - m) > m=m ¢ G. Also, G is not
a positive implicative filter of £ because, (dA(d — ¢)) = c=m ¢ G. Also,
G is not an implicative filter of £ since (m — a) > m=1¢€ G but m ¢ G.
By Theorem 2.3 we can see that GG is not a fantastic filter of &, either.

(ii) Let £ ={0,a,b,c,d,e, f,1} be a lattice with a Hesse diagram as Figure 2.
For any x,y € E, we define the operations ® and ~ as Table 4 and Table 5.
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Then €& = (E,A,®,~,1) is a good and prelinear EQ-algebra [5] and
operation — is as Table 6. By Remark 2.2, G = {1} is a prelinear filter of
£, but G is not a semi-residuated filter of £. Because,

(a®@f)—=0)—=(a—=(f—=0)=0—20)—>(a—=b=1—-e=c¢d.

DEFINITION 3.3. Let F be a semi-residuated (pre)filter of £. Then F is called a
residuated (pre)filter of € if for any a,b,c € E, (a — (b = ¢)) = ((a®b) — ¢) € F.

Y

Figure 2

EXAMPLE 3.4. Let £ be the EQ-algebra as in Example 3.2 (ii). By routine
calculations, we can see that F' = {d, e, f, 1} is a residuated filter of £.

PROPOSITION 3.5. Let £ be good and F be a (pre)filter of £. The following
conditions are equivalent.
(i) F is a residuated (pre)filter of &,
(ii) F is a semi-residuated (pre)filter £,
(ili) (e = b) = ((a®c) = (b®c)) € F, for any a,b,c € E,
(iv) a—= (b= (a®b)) € F, for any a,b € E.

PROPOSITION 3.6. Let £ be idempotent. Then F is a residuated prefilter of € if
and only if F' is a positive implicative prefilter of £.

PROPOSITION 3.7. Let F be a filter of £. Then F' is a residuated filter of € if
and only if E/F is a residuated EQ-algebra.

DEFINITION 3.8. [2] An algebra (H,®,—, A, 1) of type (2,2,2,0) is semihoop,
if for any a, b, c € H the following conditions hold:
(S1) (H,A,1) is a A-semilattice with upper bound 1,
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(S2) (H,®,1) is a commutative monoid,

(S3) a = a=1,
(54) (a®b) > c=a— (b—c).

A semi-hoop is a hoop if it satisfies the following condition:
(H5) a®(a—b)=b0O (b— a).

THEOREM 3.9. Let F be a filter of £. Then E/F = (E/F,®p,—r,1) is a
semi-hoop if and only if F is a residuated filter.

COROLLARY 3.10. IfE/F = (E/F,®p,—p, 1) is a hoop algebra, then F is also
residuated filter.

PROPOSITION 3.11. Let £ be an EQ-algebra with exchange principle condition
and bottom element 0. If F' is a prelinear and implicative filter of £, then F is a
residuated filter.

PROOF. Let F' be a prelinear and implicative filter of £. It is proved that £/F
is a Boolean algebra. Since every Boolean algebra is a residuated EQ-algebra, by
Proposition 3.7, F' is a residuated filter of £. O

THEOREM 3.12. Let £ be an EQ-algebra with exchange principle condition and

bottom element 0. Consider F is a filter of £. Then F is a prelinear and residuated
filter if and only if E/F = (E/F, Ap,Vr, @, —p,[0],[1]) is an MT L-algebra.

PROOF. Let F' be a prelinear residuated filter of £. By Proposition 3.7, £/F
is a residuated and prelinear EQ-algebra. Thus, by considering the definition of
MTL-algebra, E/F = (E/F,Vp, \p, @, —r,[0],[1]) is an MT L-algebra.
Conversely, suppose £/F = (E/F,Vp, \r, ®F,—F, 0], [1]) is an MT L-algebra. Then
the quotient structure (E/F,Ap, ®p,~p,[1]) is a residuated EQ-algebra and by
Proposition 3.7, F' is a residuated filter of £. Also, (E/F,Vp, A, ®p,~p,[1]) is a
prelinear FQ-algebra and so F' is a prelinear filter of £. O
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ABSTRACT. In this paper, we consider a special class of ideals of a commutative ring called
“lifting ideals” and comaximal factorizations of ideals of a ring into this class of ideals. Then by
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comaximal lifting ideals. Finaly, we characterize completely regular topological spaces X such
that C(X) is a clean ring.
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1. Introduction

Throughout this paper, all rings are assumed to be commutative with identity. Over
the past 40 years many authors have investigated clean and Gelfand rings. Also,
one of the most useful techniques for considering a property of a ring is to first
consider the properties of some of its quotients and then “lift” these properties to
the original ring. For example, “lifting idempotents” is an example of this technique.
Nicholson in [9] studied lifting idempotents in a noncommutative ring. He showed
that idempotents of a clean ring R can be lifted by every left ideal of R. Also he
showed that the converse of this result holds when its idempotents are central. Note
that a ring R is called clean if every element of R is the sum of an idempotent and
a unit. We recall that a ring R is called a Gelfand ring if whenever a + b = 1 there
are r,s € R such that (14 ar)(1+bs) = 0. Moreover, a ring is R called a pm-ring if
every prime ideal is contained in a unique maximal ideal. It had been asserted that
a commutative ring is a Gelfand ring if and only if it is a pm-ring, see [7].

Representing ideals of a ring (not necessarily commutative) as a sum, a product,
or an intersection of a special class of ideals is an attractive and important problem
in algebra. The problem of representing ideals as a product or an intersection of a
special class of ideals is arguably more interesting than representing them as sums.
Indeed, some important classes of rings such as Dedekind domains, Laskerian rings,
and so on are defined as rings whose ideals are a product or an intersection of a
special class of ideals. Among the various kinds of representations of ideals as a
product or an intersection of a special class of ideals, comaximal factorizations are
interesting. The study of comaximal factorizations of an ideal can be traced back to
Noether’s papers, where she proved that every proper ideal in a Noetherian ring has
a unique complete comaximal factorization (up to order). McAdam and Swan in
[6, Section 5] began the study of comaximal factorization in general and in [4, 5],
Hedayat and Rostami studied and characterized rings, where every proper ideal has
a complete comaximal factorization as J-Noetherian rings.

*Speaker
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In this paper, we will define a special class of ideals of a commutative ring called
“lifting ideals”and then consider comaximal factorizations of ideals of a ring into
this class of ideals. and by useing Pierce stalks we characterize the Gelfand rings
whose ideals can be written as a product of comaximal lifting ideals.

2. Main Results

Lifting idempotents modulo an ideal of a ring (not necessarily commutative) is a
technique employed in the proofs of most of the results concerning clean rings,
strongly clean rings, and locally compact rings, see [10]. This motivates us to
consider a special type of ideals in a commutative ring called “lifting ideals”. We
start with the following definition.

DEFINITION 2.1. Let R be aring and I be an ideal of R. We recall that the ideal
I is called a lifting ideal if each idempotent of R/I can be lift to an idempotent of
R. Tt means that if 22 — 2 € I then there exists an idempotent element e of R such
that r —e e I.

Let R be a ring and I be an ideal of R. The ideal [ is said to have a comaximal
factorization if there are proper ideals I1,...,I, of R such that I = I;...1I, and
I; + I; = I when ¢ # j. McAdam and Swan in [6, Section 5|, began the study of
comaximal factorization and in [4, 5] it was shown that a ring is J-Noetherian (i.e.,
satisfies the ascending chain condition on radical ideals) if and only if every proper
ideal has a comaximal factorization whose factors are pseudo-irreducible.

DEFINITION 2.2. Let R be a ring and I be an ideal of R. We say that [ is
a lifting comaximal factorization ideal (LCFI) if it has a comaximal factorization

whose factors are lifting. A ring R is called a [lifting comazximal factorization ring
(LCFR) whenever every proper ideal of R is a LCFI.

For a ring R, let Spec(R) and Max(R) denote the collection of all prime ideals
and all maximal ideals of R, respectively. The Zariski topology on Spec(R) is the
topology obtained by taking the collection of sets of the form D(I) = {P € Spec(R) |
I & P} (resp. V(I) = {P € Spec(R) | I C P}), for every ideal I of R, as the open
(resp. closed) sets. When considering as a subspace of Spec(R), Max(R) is called
Maz— Spectrum of R. So, its closed and open subsets are D(1) = D(I)NMaz(R) =
{m € Max(R) | I € m} and V(I) = V(I) N Max(R) = {m € Max(R) | I C m},
respectively.

Recall that a ring R is said to be Gelfand (or a pm-ring) if each prime ideal is
contained in only one maximal ideal, see [2] for more information. Also, a ring R is
clean if every element of R is the sum of a unit and an idempotent.

McGovern in [7], give a list of equivalent conditions for a ring R to be clean.

THEOREM 2.3. [7, Theorem 1.7] For a ring R the following statements are equiv-
alent:

1) Idempotents can be lifted modulo every ideal of R.
2) R is a Gelfand ring and Maz(R) is zero-dimensional topological space.
3) R is a clean ring.
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4) R/J(R) is clean and idempotents can be lifted modulo J(R), where J(R) is
the Jacobson radical of R.
5) R/Nil(R) is clean, where Nil(R) is the nilradical of R.

Set I' := ({e € I | €* = ¢}) for an ideal I of a ring R, that is, I’ is the ideal
generated by idempotent elements of I. Now let ID(R) := {I’ | I is an ideal of R}
Clearly I/ D(R) is non-empty and I D(R) contains maximal elements by a straightfor-
ward argument using Zorn’s Lemma. The maximal elements of I D(R) are precisely
of the form m’, where m is a prime or maximal ideal of R by [8, Proposition 3.2].
The factor ring R/m’ is called a Pierce stalk of R for each maximal ideal m of R.
See [8] for more information.

Now we have the following proposition.

PROPOSITION 2.4. Let R be a Gelfand LCFR. Then its Pierce stalks are semilo-
cal.

PROOF. Since Pierce stalks of any ring are indecomposable, we have the Pierce
stalks of an LCFR are rings whose proper ideals have complete comaximal factoriza-

tions. Now since R is Gelfand, the Pierce stalks of R are semilocal by [5, Proposition
4.6]. OJ

PROPOSITION 2.5. Let X be a topological space and Y be a Hausdorff subspace
of X such that for every connected component C of X the set C'NY is finite. Then
for every connected component A of Y, we have |A| = 1. In particular, Y is totally
disconnected.

PROOF. Let A be a connected component of Y. Then A is connected in X. So
there is a connected component C' of X such that A C C. By assumption, since
ACCNY, A must be finite and since Y is Hausdorff, A has exactly one element.
So |A| =1 and Y is totally disconnected. O

By [8, Proposition 3.2], every connected component of Spec(R) is homeomorphic
to Spec(R/m’). Now we have the following theorem.

Recall that a comaximal factorization for an ideal of a ring is complete if its
factors are pseudo-irreducible.

THEOREM 2.6. Let R be a Gelfand ring. Then R is a LCFR if and only if R is
clean.

PROOF. (=). By [2, Proposition 1.2] since R is a Gelfand ring, Max(R) is Haus-
dorff as a subspace of Spec(R). Now by Proposition 2.4, the Pierce stalks of R are
semilocal, that is, every connected component of Spec(R) has only finitely many
maximal ideals. Thus by Proposition 2.5, every connected component of Spec(R)
has a unique maximal ideal, that is, the Pierce stalks of R are local. Therefore by
[1, Proposition 1.2], R is a clean ring,.

(«<). If R is a clean ring, then every ideal of R is a lifting ideal and so R is a
LCFR. OJ

We recall that a topological space X is called completely regular if, for any closed
subset C' and any point x ¢ C', there exists a real-valued continuous function f over
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X such that f(z) =0 and f(C) = {1}. Also recall a topological space X is strongly
zero-dimensional if for any closed set A and an open set V' containing A, there exists
a clopen set U such that AC U C V.

Threre are some topological characterizations for clean elements of C'(X), where
C(X) is the ring of all continuous real-valued functions on X. For example, C'(X)
is clean if and only if X is strongly zero-dimensional.

In the last theorem of this paper, we consider a completely regular topological
space X such that C'(X) is an LCFR.

THEOREM 2.7. Let X be completely regular topological space. Then C(X) 1is
clean if and only if it is an LCFR.

PRrROOF. By [3, Theorem 2.11], C(X) is a Gelfand ring. Thus, the result follows
from Theorem 2.6. 0
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1. Introduction

The main theme of this paper is to deal with situations under which certain Goren-
stein injective modules are injective. To give a more precise description, let us track
back to the well-known paper by M. Auslander and M. Bridger [1] where they de-
fined the notion of modules of G-dimension zero. Over commutative Gorenstein
local rings, these modules coincide with (maximal) Cohen-Macaulay modules.

Several decades later, E.E. Enochs and O.M.G. Jenda introduced a framework
that was able to pass the definition of zero G-dimension modules to the setting of
non-commutative rings [4]. This attempt led in defining the so-called Gorenstein
modules; namely, Gorensein projective, Gorenstein injective, and Gorenstein flat
modules. Now a days, Gorensein modules are known to play significant role in
various branches of algebra, e.g. from representation theory of finite dimensional
algebras, where they emerge under different names, to relative homological algebra
[5], etc.

Identifying Gorenstein modules in categories other than module categories has
also been an active framework of research during last decade. In this regard, we
want to mention the papers [2] where Gorenstein projective and injective objects in
the category of (possibly infinite) quiver representations has been considered.

The importance of dealing with these Gorenstein modules may also be viewed
from several other perspectives, one of which is the view-point of homological con-
jectures, particularly those appearing in representation theory of finite dimensional
algebras. One of the most long-standing conjectures in this field is the so-called
Auslander-Reiten Conjecture, asserting that any finitely generated module M over
a finite dimensional algebra A satisfying Ext’ (M, M @A) = 0 for i > 1 is projective.
The conjecture, being possible to be formulated in terms of Gorenstein projective
modules, also has parallel statements in commutative algebra and has recently been
considered in a stronger dual sense [6]. Being involved with Gorenstein injective
Artinian modules, this dual statement is another motivation for us to deal with
Gorenstein modules.
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2. Main Results

Let us firstly fix some notation: Throughout the paper, (R, m) is a commutative
local Noetherian ring whose unique maximal ideal is m. We assume further that R
is d-Gorenstein, d > 0, in the sense that it has finite self injective dimension equal
to d [8]. For an R-module M, Add (M) denotes the big additive closure of M whose
objects are all R-modules that are isomorphic to a direct summand of a direct sum
of (probably infinite) copies of M. Also, M is said to be self-orthogonal provided it
has no self extensions, that is to say, Extp(M, M) = 0. Moreover, Inj(R) denotes
the class of injective R-modules.

DEFINITION 2.1. For an R-module M, let M, the left orthogonal class to M,
be the class of all R-modules N with Ext},(N, M) = 0. The notion of M=, the right
orthogonal class to M, is defined dually.

We start by recalling the definition of a Gorenstein injective R-module.

DEFINITION 2.2. An R-module M is said to be Gorenstein injective provided it
is a syzygy of an exact complex of injective R-modules

o= L = Ily—=14— -,

that remains exact after applying the functor Homg(E, —) for all injective R-module
E.

Such a complex is reffered to as a complete resolution of M and the kernels of
the positive differentials are sometimes called the syzygies of M. (This causes no
ambiguity since we do not work with projective resolutions, the setting in which the
term ”syzygy” is very often used.)

It is clear that injective modules are Gorenstein injective. We note that Goren-
stein projective modules are defined dually and it is also well-known that this notion
runs in a parallel way to that of the so-called moduels of zero G-dimension, defined
by Auslander and Bridger in [1]. For basic properties of Gorenstein injective mod-
ules and their projective and flat counterparts, we refer to the classical book [5].
We also require some elementary properties of ordianl numbers, for which we refer
to any classical text book on set theory, e.g. [7].

DEFINITION 2.3. Let A be an ordinal number. A family of submodules { M, },<a
of an R-module M is said to be continuous if M, C Mg for a < 8 < X and every
limit ordinal 8 < A satisfies Mg = (J,_5 Ma-

The following lemma, due essentially to Eklof and Trlifaj, is crucially used in
this paper. For its proof and the notions used therein, we refer to [3].

LEMMA 2.4. Let M and N be R-modules such that M can be written as the union
of a continuous chain {My}a<x of its submodules. Assume that Extp(My, N) =0 =

Xtp( ==, or every o + 1 < A. en BExt , = 0.
Extp (%52, N) fi 1 < \. Then Exth(M,N) =0

Construction. Let M be a Gorenstein injective R-module. Assume further that
for some n > d, M has a syzygy K, (automatically Gorenstein injective) that is
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self-orthogonal and satisfies * K,, N K = Add (K,,) U Inj(R). Hence there exists a
minimal complete resolution

e P [ I BT SRR

of M as stated above, with M = Ker(/_; — I_5) and K,, = Ker([,,_1 — I,,_2); here
minimal means that the left part of the resolutions comes up by using consecutive
injective covers [5, Theorem 5.4.1]. Consider the short exact sequence 0 — K, 41 —
I, — K, — 0 and set M, = E(g), the injective envelope of the R-module %. Using
transfinite induction, we construct a continuous chain of modules { M, }q<», for any
ordinal number A, with C' = |J,_, M, such that M2 ~ @, K, for some index
set J, and such that for any a +1 < A, any R- homomorph1sm Ky11 — M, may
be extended to an R-homomorphism I,, — M,y;. In view of [5, Corollary 7.3.2],
this implies that any R-homomorphism K, .; — C has an extension I, — C or,
equivalently, Extp(K,, C) = 0. This means that C € K.

On the other hand, since K,, is Gorenstein injective, one has Exty(My, K,,) = 0
according to [5, Theorem 10.1.3]. Also

M,
Exth( M“ K,) ~ Exth(@P K., K,)
@ J
~ ] EBxth(Kn, K,)
J

= 0,

because K, was supposed to be self-orthogonal. Hene, by Lemma 2.4, Ext},(C, K,,) =
0 which means C' € +K,,. So finally our hypothesis reveals that C € Add (K,) U
Inj(R).

LEMMA 2.5. Under the hypothesis of the Construction, I, has no direct sum-
mands isomorphic to E(£).

The proof of this lemma is based mainly on the aforementioned Construction
and, in particular, on the observation that C' € Add (K,,) U Inj(R). We also need
the following interesting lemma.

LEMMA 2.6. Suppose p and q are two prime ideals of R. Then

HomR<E<§>, E(?)) 40,

if and only if p C q.
ProOF. This is taken from [5, Theorem 3.3.8]. O

Having proved the couple of lemmas, we are now in the position to state and
prove the main result of the paper.

THEOREM 2.7. Let (R,m) be a complete local d-Gorenstein ring and let M be

an Artinian Gorenstein injective R-module admitting a self-orthogonal syzygy K,,
n > d, such that * K, N KX = Add (K,,) UInj(R). Then M is injective.
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Sketch of The Proof. Take the left part of the aforementioned complete resolution
of M, that is,

o=l =10, ==L =1y > M—=0,
R

and apply Hompg(E(:¥), —). By the definition, one obtains the exact complex

R),[o) — HomR(E(g),M) 0.

PN HomR(E(g), Tni1) — HomR(E(g), 1) = -+ = Homa(B(.

Since R is Noetherian, the structure of injective R-modules [5, Theorem 3.3.10] in
conjunction with Lemma 2.5 yields that I,, decomposes as a direct sum of injective
modules of the form F (%) for non-maximal prime ideals p of R. Therefore Lemma

2.6 gives Homp(E(£),I,,) = 0 so that one gets an exact sequence

0 HomR(E(g), Loo1) = HomR(E(g), Tnia) = - — HomR(E(g), Io) — HomR(E(g), M) = 0.
Taking into account that R is complete, another application of Lemma 2.6 to this
sequence settles that the R-module Hompg(E(£), M) is of finite projective dimension.
Moreover, by [5, Ex. 8, p. 252|, this module is also Gorenstein projective. Thus it
is a free module by [5, Proposition 10.2.3]. Finally, [6, Proposition 2.4] gives that
M is injective, as required.
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complete characterization of those H for which A(G) is sequentially Cohen-Macaulay.
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1. Introduction

In this paper, K denotes a field and S = K|[xq,...,z,]. Let G be a simple graph
on vertex set V(G) = {vy,...,v,} and edge set E(G). Then the edge ideal I(G) of
G is the ideal of S generated by {z;z;|v;v; € E(G)}. A graph G is called Cohen-
Macaulay (CM, for short) when S/I(G) is CM for every field K. Many researchers
have tried to combinatorially characterize CM graphs in specific classes of graphs,
see for example, [2, 3, 4, 5, 9]).

The family of cliques of a graph G forms a simplicial complex which is called
the clique compler of G and is denoted by A(G). Algebraic properties of simplicial
complexes in general also has got a wide attention recently, see for example [3, 7]
and the references therein. If we denote the Stanley-Reisner ideal of A by Ia, then
we have In@q) = 1 (G), where G denotes the complement of the graph G. Thus
studying clique complexes of graphs algebraically, is another way to study algebraic
properties of graphs.

Here we say a simplicial complex A is CM over K, when S/In is CM . If A is
CM over every field K, then we simply say that A is CM. Recall that All = (F|F ¢
A,dim F = i) is called the pure i-skeleton of A and if each Al is CM for i < dim A,
then A is called sequentially CM.

Suppose that H is a simple undirected graph and G = L(H) is the line graph
of H, that is, edges of H are vertices of G and two vertices of G are adjacent if
they share a common endpoint in H. Line graphs are well-known in graph theory
and have many applications (see for example [10, Section 7.1]). In particular, [10,
Theorems 7.1.16 to 7.1.18], state some characterizations of line graphs and methods
that, given a line graph G, can find a graph H for which G = L(H).

In [8], the author investigated when A(G) is CM, where G = L(H). A charac-
terization of all H such that A(G) ic CM was given. The family of such graphs was
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proved to be a very limited family of graphs. Here we study when A(G) is sequen-
tially CM and will show that the family of graphs H for which A(G) is sequentially
CM is a much larger class of graphs.

For definitions and basic properties of simplicial complexes and graphs one can
see [3] and [10], respectively. In particular, all notations used in the sequel without
stating the definitions are as in these two references.

2. Main Results

In this section, we always assume that A = A(G), where G = L(H). Note that
every O-dimensional complex is CM and a pure 1-dimensional complex is CM if and
only if it is connected (see for example [1, Exercise 5.1.26]). The following result
considers Al for i > 3.

PROPOSITION 2.1. Suppose that H is connected. Then all nonempty Al for
1 >3 are CM if and only if H has at most one vertex v with degree > 4.

Suppose that v is a vertex of H with degree 2 adjacent to vertices a and b. By
splitting v, we get the graph H’ with vertex set (V(H) \ {v}) U {v1, v}, where v;
and vy are new vertices, and the same edge set as H, where we identify the edges av
and bv of H with av; and bvy in H'. Note that v; and vy are both leaves (vertices
of degree 1) in H’. Also recall that if A is shellable then it is sequentially CM and
if A is vertex decomposable, then it is shellable (for definitions of shellability and
vertex decomposability see [3, Section 8.2] and [7], respectively).

PROPOSITION 2.2. Suppose that H is connected. Then the following are equiva-
lent.

1) A(G) is sequentially CM.

2) If H' is obtained by splitting all vertices of degree 2 of H which are not in
a triangle, then every connected component of H' is an edge except at most
one component whose line graph has a sequentially CM clique complex.

3) H can be obtained by consecutively applying the following two operations on
a graph Hy in which every vertex of degree two is in a triangle and whose
line graph has a sequentially CM clique complex:

a) attaching a new leaf to an old leaf of the graph;
b) unifying two leaves whose distance is at least 4.

Moreover, if any the above statements holds, Hy is as in Proposition 2.2 and A(L(Hy))
is vertex decomposable (resp. shellable), then A(G) is vertex decomposable (resp.

shellable).

In the sequel, unless stated otherwise explicitly, we assume that Hy is a connected
graph with exactly one vertex v with degree » > 3 and also suppose that every
vertex of degree 2 in Hy is in a triangle. We also let Gy = L(Hp) and Ag = A(Gy).
According to Proposition 2.2 and its corollary, by characterizing those Hy for which
A is sequentially CM, we can derive a characterization of all graphs whose line

graphs have a sequentially CM clique complex. Noting that for ¢ > 2, A([)Z] is either
empty or the pure i-skeleton of a simplex and for ¢ < 2, Ag} is CM since A is
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connected, we just need to see when Agﬂ is CM. If A is pure and for any two facets
F and G of A, there is a sequence F' = F,..., F;, = G of facets of A, such that
|F; N Fiq| = || — 1 for all i, we say that A is strongly connected (or connected in
codimension 1). By [3, Lemma 9.1.12], every CM complex is strongly connected so

first we study when A([f] is strongly connected.

Suppose that [y = {v} and define L; = Ng,(Li—1) \ (U;;%Lj) to be the set of
vertices of level i in Hy. Here Ny, (A) is the set of all vertices adjacent to a vertex in
A inside the graph H,. Thus indeed, the level of a vertex is its distance to v. Note
that a vertex with level 7 can be adjacent only to vertices with levels ¢ — 1,4,7 + 1.
Suppose that Hy[L;] is the induced subgraph of Hy on the vertex set L;. Then if
H' = Hy[L4], every u € Ly has degree at most 2 in H’, since it is also adjacent to
v in Hy. Therefore each connected component of H' is either an isolated vertex or
a cycle or a path of length > 1. We call these isolated vertices, cycles and paths
with positive lengths of Hy[L1|, the level 1 isolated vertices, level 1 cycles and level
1 paths, respectively.

PROPOSITION 2.3. The complex A[02] is strongly connected, if and only if Hy
satisfies both of the following conditions (see an example in Figure 1).
1) Every level 3 vertex of Hy is a leaf.
2) A level 2 vertex x of Hy satisfies one of the following:
a) x is a leaf adjacent to an endpoint of a level 1 path,
b) deg(x) = 2 and z is adjacent to both endpoints of a level 1 path with
length 1;
c) deg(x) = 3 and x is adjacent to both endpoints of a level 1 path with
length 1 and the other neighbor of x is either a level 3 vertex or a level
2 vertex with degree 3 or the endpoint of a level 1 path.

v

Ly
Ly
Ly

FIGURE 1. An example of Hy satisfying conditions of Proposition 2.3.

DEFINITION 2.4. Suppose that C' is a graph, v is a vertex of C' and r is a
positive integer. We say that C' is an r-graph rooted at v or simply an r-graph, if C'
is connected, deg(v) = r, all other vertices of C' have degree at most min{r, 3}, all
vertices of C' with degree 2 are in some triangles and also C' satisfies the conditions
of Proposition 2.3, where the level of a vertex of C' is defined by Ly = {v} and
Li = N(Li-1) \ (U;ZoLy)-

THEOREM 2.5. Suppose that H is a connected graph with at least 1 edge. Let
A = A(L(H)). Then the following are equivalent.
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1) A is vertex decomposable.

2) A is shellable.

3) A is sequentially CM (over some field).

4) For some positive integer r, there is an r-graph Hy in which every level 2
vertex with degree 3 has a leaf neighbor and H can be constructed from H
by consecutively applying the operations (3a) and (3b) of Proposition 2.2(3).

5) If H' is the graph obtained by splitting all vertices of H with degree 2 which
are not in any triangle, then every connected component of H' is an edge
except at most one. The only non-edge connected component of H', if exists,
s an r-graph for a positive integer r, in which every level 2 vertex with degree
3 has a leaf neighbor.

REMARK 2.6 (A “visual description” of graphs whose line graphs have sequen-
tially CM clique complezes). Suppose that G = L(H). Then according to the previ-
ous theorem, A(G) is sequentially CM if and only if H can be drawn in the following
way (see Figure 2).

First we draw some (maybe zero) paths and cycles and call them the level 1
paths and cycles (these are exactly the level 1 paths and cycles of Hy in the previous
theorem). Then we add a new vertex v and join this vertex to all vertices of these
path and cycles. For each path with length 1 we may also add a new vertex and join
this vertex to both endpoints of the path (the level 2 vertices of Hy with degree > 2).
We call these vertices, level 2 vertices. Now we attach some paths with lengths at
least one to the following vertices (these paths denote applying (3a) of Proposition
2.2(3) several times to the leaves of Hy): at most one path to each endpoint of a
level 1 path, except those adjacent to a level 2 vertex; at most one path to each level
2 vertex; some (maybe zero) paths to v. Finally, we may “tie” some pairs of these
new paths together, by unifying their degree 1 ends, but as we must not make any
new triangles, the distance of the degree 1 ends should be at least 4 (this is applying
(3b) of Proposition 2.2(3)).

FIGURE 2. A graph whose line graph has a sequentially CM clique complex.

An Algorithm. At the end of this paper, we show that using Theorem 2.5(5),
we can present a linear time algorithm which takes as input a graph G and checks
whether G is a line graph or not and if yes, says whether A(G) is sequentially CM.
Checking if G is a line graph and even returning an H such that G = L(H) has
been previously done by Lehot in [6] in a linear time. Thus we can assume that
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H is given and we must find out if A(L(H)) is sequentially CM. Here we state an
algorithm, the correctness of which is ensured by Theorem 2.5 and its worst case
time complexity is ©(n). In this algorithm, we use breadth-first search (BFS) which
can be found in for example [10].

Step 1: Run through the vertices of H and compute the degree of each vertex. If
for a second time a vertex with degree more than three is visited, return false. Also
for each vertex x with degree 2 and with neighbors a and b, check if a is a neighbor
of b. If not, split the vertex x by removing the edge xb and adding a new vertex
adjacent only to b.

Step 2: Compute the connected components of the obtained graph (say, by BFS).
If more than one connected component is not an edge return false. If all connected
components are edges, return true. Else let Hy be the only connected component
which is not an edge.

Step 3: Find a vertex v with maximum degree in Hy. Run a BFS starting at v
and mark each visited vertex with its level which is the distance of the vertex from
v. When visiting a level 2 vertex y consider the following cases.

deg(y) = 1: Let a be the neighbor of y (which has level 1). If a has no level 1
neighbor (so that a is not the endpoint of a level 1 path), return false.

deg(y) = 2: The neighbors of y should have level 1 and be adjacent. If not,
return false.

deg(y) = 3: Then its neighbors should be two level 1 adjacent vertices and a
vertex not yet visited. If not, return false.

Also when visiting a level 3 vertex z, if x has not degree 1, return false.
Step 4: Return true.
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1. Introduction

There are some results concerning relations between center and derived subgroup of
a group G. Schur proved that if G is a group such that the order of G/Z(G) is finite,
then the order of G’ is finite. The converse of Schur’s theorem is not true in general.
Many authors tried to give an answer to this question with some more conditions
(see [3, 5, 8]). We intend to give an analogous question in the theory of Lie algebras.
In [4], it is shown that if dim L/Z(L) = n, then dim L* < $n(n —1). From [7], a Lie
algebra L is said to be capable, if there exists a Lie algebra H such that L = H/Z(H).
For example, consider the Lie algebra H(1) = (x1,x9,x3 | [x1, 2] = x3). Since there
exists the Lie algebra Ly3 = (%1, %9, T3, 24 | [21,22] = x3,[21, 23] = x4) such that
H(1) = Ly3/Z(Ly3), H(1) is a capable Lie algebra. It is known from [1] that if
L is a capable Lie algebra, then the finiteness of dim L? implies the finiteness of
dim L/Z(L). In this note, we obtain a generalization of Schur’s theorem for theory
of Lie algebras and we show that if L/Z(L) is finite dimensional, abelian, nilpotent,
solvable or supersolvable, then so is [L, L].

Throughout this note, we use the notations and terminology from [2].

Let F be a fixed field and let [,] denote the Lie bracket. For any two Lie algebras L
and K, we say that there exists an action L on K if an F-bilinear map L x K — K,
(I, k) — 'k satisfying

k="K ="k and kK] =[hK] 4 R K],
for all [,I' € L and k, k" € K. The actions are compatible if
B=1'F) and W = [K K]

for all k. k' € K, [,l' € L.
Let L and K act compatibly on each other. Then the non-abelian tensor product
L ® K is the Lie algebra generated by symbols [ ® k for all [ € L and k € K with
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the following defining relations
c(Lok)=cd®k=1Rck,
I+ k=10k+1'®k,
I@k+E)=Ik+I®F,
Lok=1® "k-1'® 'k,
1k K= lok- ek,
(lok), (oK) =-"*1e "k

forallc e F, [,l' ¢ L and k, k' € K. If L = K and all actions are Lie multiplication,
then L ® L is called the non-abelian tensor square of L. Clearly, L act compatible on
itself. In [6], it is shown that if L is nilpotent, solvable, or Engel, then so is L ® L.

2. Main Results

The following proposition is useful for proving the next theorem.

PROPOSITION 2.1. Let 0 — M % L % P =5 0 be a short ezact sequence of Lie
algebras such that M C Z(L). Then there is an epimorphism P ® P — [L, L] such
that the following diagram is commutative.

PP—~P®P

.

L, L) —2~ [P, P]

where y(p @ p') = [p, p'] for all p,p’ € P.
PRrOOF. From [6, Proposition 3.1], the following sequence is exact
MeL)®(LeM)—-LL— PP —D0.
Put X =Im((M®L)® (L& M)). Then 6 : (L L)/X — P® P is an isomorphism
and ¢ : L ® L — L is given by [ ® I' — [[,I'] is a homomorphism. Since M is
central, we have ¢(X) = 0. Hence ¢ induces a homomorphism @ : (L ® L)/X — L.

Therefore ) = p~' : P® P — [L, L] is a Lie homomorphism and the diagram is
commutative. U

In the next theorem, we prove a generalization of Schur’s theorem for some class
of Lie algebras.

THEOREM 2.2. Let 0 - M — L — P — 0 be a short exact sequence of Lie
algebras such that M C Z(L). If P is finite dimensional, abelian, nilpotent, solvable
or supersolvable, then so is [L, L.

PROOF. It is proved in [1, 6] that if P belongs to the class finite, abelian,
nilpotent, solvable or supersolvable, then so is P ® P. By using Proposition 2.1,
[L, L] is a homomorphic image of P ® P, hence the result follows. O

52



ON A GENERALIZATION OF SCHUR’S THEOREM

COROLLARY 2.3. Let L be a Lie algebra. If L/Z (L) is finite dimensional, abelian,
nilpotent, solvable or supersolvable, then so is [L, L].

ProoOF. Put M = Z(L) and P = L/Z(L). By using Theorem 2.2, the result
follows. 0
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1. Introduction

Throughout this paper, all rings are associative rings with identity, and modules
are unitary right modules. A submodule N of an R-module M is superfluous in M
and denoted by N < M, in case for any submodule L of M, L + N = M implies
L = M. Recently, Babak Amini and Afshin Amini in [2] introduced the notions of
strongly superfluous submodule, and then the basic properties of strongly superflu-
ous submodules on max rings are investigated. A submodule K of an R-module M
is said to be strongly superfluous in M, denoted by K <, M, if @, , K <P,., M
for any index set I. Also in 2016, Facchini and Nazemian introduced the notions
of isoartinian and isonoetherian modules. A module M is said to be isoartinian if,
for every descending chain M > M; > M, --- of submodules of M, there exists an
index n > 1 such that M, is isomorphic to M; for every ¢ > n. Dually, M is called
1sonoetherian if, for every ascending chain M; < My < --- of submodules of M,
there exists an index n > 1 such that M,, = M; for every ¢ > n. A module M is
isosimple if it is non-zero and every non-zero submodule of M is isomorphic to M
(see [4]).

In this paper, we introduce and study isosuperfluous submodules and isopro-
jective cover modules and then, we examine some properties of those modules on
max rings and isoartinian rings, respectively. A submodule N of a module M is
1sosuperfluous in M and denoted by N <;,, M, in case for any submodule L of M,
L+ N = M implies L = M. A module M is said to be isoprojective cover of module
B if M is projective and ¢ : M — B is a surjective map with ker¢ <;,,, M. A
ring R is called right isosemiperfect if every finitely generated right R-module has
a isoprojective cover. Also, examples are given showing that every isosuperfluous
submodule is not superfluous and strongly superfluous and every isoprojective cover
module is not projective cover.
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2. Main Results
We begin this section by recalling the following definition.

DEFINITION 2.1. A submodule N of an R-module M is isosuperfluous in M and
denoted by N <;,, M, in case for any submodule L of M, L + N = M implies
L=M.

Clearly, any superfluous submodule is isosuperfluous but not conversely, for ex-
ample, submodule 27Z of Z is isosuperfluous but 2Z is not superfluous and strongly
superfluous in Z, since Z is isosimple Z-module by [4, Remark 2.2].

PROPOSITION 2.2. Let M be a module with submodules L, K and N; for any
1 € I. The following statements hold true.
(i) If L+ K <i5o M, then L <;50 M and K <;5, M.
(il) If L<M and K <;50 M, then L+ K <;5, M.
(iii) If M is finitely generated and N; << M for any i € I, then ®N; <;50 M.

PrOOF. (i) Let, for submodule D of M, D+ L = M. Since D+ L+ K = M and
L+ K <;50 M, we have D = M. Therefore, L <;,, M and also similarly K <;,, M.

(ii) Let, for submodule D of M, D+ L + K = M. Since K < M, we have
D + L = M. By hypothesis, L <;;,, M and so D = M.

(iii) Assume that N; < M for any i € I. If ®N; £;50 M, then @, ; N; is not
superfluous in M. Thus, if for a submodule D of M, D + @,.; N; = M, then
D # M and so % # 0. As % is finitely generated, M /D contains a maximal
submodule X such taht D C X. But N; C X for any i € [ (if V; g X, we have
N; + X = M which implies M = X, a contradiction). Therefore, any N; C X
and so from D + @z‘e ; N; = M, it follows that M C X, which is a contradiction.
Consequently &N; <, M. O

Recall that a ring R is said to be right max in case every nonzero right R-module
has a maximal submodule.

PROPOSITION 2.3. Let R be a ring and M an R-module. Then, the following
statements are equivalent.

(i) R is a right maz ring.

(i) Let {N¢}ser be a family of nonzero right R-submodules of M and F =
Tu{j}. Then @feF Ny <iso M and @,.; N; < M if and only if N; <M
and Nj Siso M.

(i) Let {Ny¢}rer be a family of nonzero right R-submodules of M and F =
TU{j}. Then ZfeF Ny <iso M if and only ifi € I, N; < M and N; <;5, M.

PROOF. (i) = (it) By [2, Theorem 2.8], if M is a nonzero right R-module,
then N; < M if and only if @, ; N; < M for any i € I and so, by Proposition 2.2,
@fEFNf = ®i61Ni + Nj Siso M. If @feFNf = ®i61NI + Nj Siso M, then
N; <iso M by Proposition 2.2.

(i) = (4ii) By (ii), B,c; Ns < M if and only if N; < M for any i € I. Since
B,c;Ni €M C P,.; M, by [5, Lemma 4.59], P, ., N; <P,.; M. On the other
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hand, ¢ : @,.; M — M is epimorphism. Hence, by [1, Lemma 5.18], > .., N; =
¢(P,c; Ni) < M. Thus, by Proposition 2.2, > .. n Ny = > .., Ni + N; <50 M.

(1) = (i) Let M be a nonzero right R-module. By [1, Proposition 9.13],
Rad(M) = > {N | N is superfluous in M}. As every superfluous submodule is
isosuperfluous, by (iii), Rad(M) =3 _..; N; <iso M. We claime that Rad(M) # M.
If Rad(M) = M, then Rad(M)+ N = M for any submodule N of M. Hence,
by Definition 2.1, N & M so that M is isosimple. Thus, by [4, Remark 2.2], M
is finitely generated which is a contradiction. Therefore, Rad(M) # M and any
nonzero right R-modules M has a maximal submodule. U

DEFINITION 2.4. An R-module M is callled isoprojective cover of a module B
if M is projective and ¢ : M — B is a surjective map with ker¢ <;,, M. Also, a
ring R is called right isosemiperfect if every finitely generated right R-module has a
isoprojective cover.

It is clear that any projective cover is isoprojective cover but not conversely.
For example, [5, Example 4.61], let R = Z = M and B = Z,. It is clear that
¢ : Z — 7y is a surjective map with ¢(z) =y, where Zy =< y >. Hence ¢(3z) =y
and Z = ker¢+ < 3x > so that Z =< 3x >. Therefore, kerp <;,, Z and so Z is a
isoprojective cover of Zs. But Z is not isoprojective cover of Z,.

PROPOSITION 2.5. Let R be a ring. Then the following statements are equivalent.

(i) R is a right maz ring;

(ii) Let {Nf}rer be a family of nonzero projective R-submodule of M and
F=TU{j}. Then (M,} ;cp®5) is isoprojective cover and (M, ), ; ¢i) is
projective cover if and only if (M, ¢;) is projective cover for any i € I and
(M, ¢;) is isoprojective cover;

(i) If P/Rad(P) is semisimple for every projective R-module P, then any
nonzero R-module has a mazximal submodule.

PROOF. (iii) = (i) and (i) = (¢i) is clear by Proposition 2.3.

(11) = (i1i) For every nonzero R-modules M, there exists an epimorphism
f: P — M, where P is projective. Then, By [1, Exercises 9, pp:122] , f(Rad(P)) =
Rad(M). By (ii), Rad(P) < P and so, by [1, Lemma 5.18], Rad(M) <;s, M. Thus,
Rad(M) # M so that M has a maximal submodule. O

COROLLARY 2.6. Let R be a ring. Then the following statements are equivalent.
(i) R is a right mazx ring.
(ii) Let N; be a nonzero R-submodule of M; for anyi € I. Then (®;e;M;, Bicrdi)
is projective cover if and only if (M;, Dic1¢;) is projective cover.

THEOREM 2.7. Let D on M, (D) be a right V-domain. Then every isoartinian
semiprime Noetherian ring is isosemiperfect.

PRrROOF. We only need to prove that every finitely generated R-module has a
isoprojective cover. Let R be a right isoartinian semiprime right Noetherian ring.
By [4, Teorem 4.7], R = Hle M,,(D;), where any D; is a PRID. Thus for any
finitely generated right R-module M, by [3, Theorem 3.4], we have M = @®T;, where
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any T; is either simple left R-module or isosimple direct summand of Rg. Let every

T; be a simple module. As —£— is finitely generated, %}R) is semisimple which is a

Jac(R
contradiction; because R = Z (is) a right isoartinian semiprime right Noetherian ring
that it is not semisimple. Therefore, any 7T; is isosimple direct summand of Rr and
so M = @T, is projective. By Definition 2.1 and [5, Lemma 4.60], Jac(R)M <;s, M.
Therefore, if for a submodule S of M, Jac(R)M + S = M, then M = S. Since M
is projective and f : M — S is isosuperfluous, we deduce that S has a isoprojective

cover. Hence M has a isoprojective cover. U
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1. Introduction

Poisson-Lie groups introduced by Drinfeld [3]. Recently many researchers working
on geometric structures on Lie groupoids and try to extend known methods on Lie
groups to Lie groupoids. By linearization a Lie groupoid at the units, one can
correspond a Lie algebroid to it. Suppose that G = M be a Lie groupoid with
source and target maps s and t. We denote it’s Lie algebroid by AG, equipped with
anchor map p and bracket [.,.].

In Section 2, we will have a quick overview of Lie groupoid concepts (for more
details refer to [4, 5, 6, 7]). In section 3 we define the Poisson quasi-Nijenhuis
Lie groupoids from the invariant point of view and infinitesimal counterpart of this,
called algebraic structures corresponding to Poisson quasi-Nijenhuis groupoids. We
prove that the P —¢N structures on Lie groupoids are in one-to-one correspondence
with algebraic structures on their Lie algebroids. All results about Poisson-Nijenhuis
structure on Lie groupoids with ¢ considered as zero, will result.

2. Preliminaries

2.1. Lie Groupoids. A groupoid G is a small category in which every arrow
is invertible. Every groupoid G comes with a set of arrows and a set of objects.
Usually, the set of arrows is again denoted G. If M is the set of objects, we say that
G is a groupoid over M and we call M the base of G. We use symbol G = M for
the groupoid. A Lie groupoid is a groupoid where the set of objects and the set of
morphisms are both manifolds, the source and target operations s,t : Mor — Ob
are submersions, and all the category operations (source and target, composition,
and identity-assigning map) are smooth. Any Lie group gives a Lie groupoid with
one object, and conversely. So, the theory of Lie groupoids includes the theory of
Lie groups. Consider Lie groupoid G = M, for all x € M, s !(z) is called its
source-fibre or s-fibre, G, := s~ (x) Nt () its isotropy group and L, := t(s~!(x))
its orbit. L, C M is an embedded submanifold of G. G is called transitive if it has
only one orbit. Its orbit space is a single point. The pair groupoid M x M = M

*Speaker
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is an important example of a transitive Lie groupoid. G = M source-connected
(s-connected), if s(z) is connected for each z € M. Similarly, G = M source-
simply-connected (s-simply connected), if s7'(z) is connected and simply-connected
for each x € M.

A morphism between Lie groupoids is a pair of maps F': G = G, f: M — M’
such that

S/OF:fOS, t,OF:fOt7 F(hg):F(h)F(g)7 V<hag)€G*G

If F and (hence) f are diffeomorphisms, the morphism of groupoids called isomor-
phism of Lie groupoids.

2.2. Lie Algebroids.

DEFINITION 2.1. A Lie algebroid is a vector bundle A on base M together with
a bracket of sections I'A x I'A — I'A and a map p: A — T'M such that

e the bracket of sections makes I'A an R—Lie algebra,
o [X.fY] = [IX, Y]+ p(X)()Y.VX,Y € TA, [ € C=(M),
o p|X,Y]|=[pX,pY], X,Y €A
A Lie algebra is a Lie algebroid over a point, M = pt. For a Lie groupoid G = M,

restrict TG to the identity elements; get Ti,/G, a vector bundle on M. Right-
translations R,, map s-fibers to s-fibers. So take the kernel of T'(s) : TG — T'M.

Call this AG. Each X € T'AG defines a right-invariant vector field Y on G by
7(9) = Xg. That is, X is s—vertical and ?(hg) = ?(h)g for all h, g. Each right-
invariant vector field is 7 for some X € 'AG. The bracket of right-invariant vector

fields is right-invariant. Define bracket on I'AG by [X,Y]| = [7, ?] AG is the Lie
algebroid of G. Similar to the case of lie algebras we can find a linear isomorphism
between lie algebroid and tangent space of corresponding Lie groupoid.

2.3. Poisson Quasi-Nijenhuis Manifold. A Poisson-Nijenhuis manifold is a
manifold M together with a Poisson bivector IT € I'(A?T'M) and a Nijenhuis tensor
N such that they are compatible in the following senses

e Noll* =1I* o N* (thus, N oIl* defines a bivector field NII on M),
e C(II,N) = 0,

where
C(H7N>(a76> = [(X?ﬁ]NH_([N*OéaB]H—i_[a? N*B]H_N*[aﬂﬁ]ﬂ>7 for auﬁ S QI(M>

and the skew-symmetric C*°(M)-bilinear operation C'(II, N)(—, —) on the space of
1-forms is called the Magri-Morosi concomitant of the Poisson structure II and the
Nijenhuis tensor N given by

[@7 5]1_[ = EHuaﬁ - EHﬁﬁOé - d(H(CK, 6))7 VOé, 6 < F(T*M)

An (1,1)-tensor N is called a Nijenhuis tensor, if the Nijenhuis torsion defined
below is equal to zero

TN(X,Y):=[NX,NY] - N([NX,Y] + [X,NY] = N[X,Y]), forX,Y e I(TM).
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By definition, a Poisson quasi-Nijenhuis manifold is a quadruple (M, II, N, ¢), where
M is manifold endowed with a Poisson bivector field II, a (1, 1)-tensor N and a closed
3-form ¢ such that II and N compatible in the Magri-Morosi sence and

[INX,NY] = N([NX,Y] + [X,NY] = N[X,Y]) = Il (ixay®), forX,Y € x(TM).

3. Main Results

In this section, we define Poisson quasi-Nijenhuis Lie groupoids from the invariant
point of view, and their infinitesimal counterpart on the Lie algebroids AG of G.

DEFINITION 3.1. A Poisson quasi-Nijenhuis structure (II, ®, N) on a Lie groupoid
G = M is said to be right-invariant, if:

1) The Poisson structure II is right invariant, i.e., there exists A € T'(A2AG)
such that IT = K)

2) The closed 3-form ¢ is right-invariant, that is, there exist a real valued
three linear, skew map ¢ € C?(AQG) satisfying 3-cocycle condition, such
that & = E}

3) Multiplicative (1,1)—tensor N = (N, Nys) also is right-invariant, i.e., there
are linear endomorphisms n : I'(AG) — I'(AG) and ny : TM — T'M such
that

N =T, Ny =na.

In the following we prove our claims only for N, beacuse Nj; is completely
determined by N. This is also true for n and ny,.

PropPOSITION 3.2. Let (II, ®,N) be a right-invariant Poisson quai-Nijenhuis
structure on a Lie groupoid G = M with Lie algebroid AG and space of unites
1y CG. IfA € T(A2AG) and ¢ € N3(AG) that are the values of 11 and ® restricted
to space of unites 1y and (N|ag, Ny|ra) = n, then

1) [A,Alsy = 0, where [,]sn is the Schouten-Nijehuis bracket,

2) The Nijenhuis torsion [n,n] of n on AG equals A*(¢*(X,Y),VX,Y € T'(AG),
3) noA* = Afon*,

4) ¢ and i,¢ are 3-cocycles with values in R,

5) The Magri-Morosi concomitant’s C(A,n)(«, 5) =0,

%
6) A¥ and o are Lie groupoid morphisms.

THEOREM 3.3. Let s—connected and s—simply connected Lie groupoid G = M
with Lie algebroid AG. For real Lie algebroid of finite dimension AG, A € A*(AG)
and ¢ € N3(AG)* be a 3-form on AG andn : T(AG) — T(AG) andny : TM — TM
be the linear endomorphisms on AG which satisfy conditions (1-6); so-called A — qn
structure on the Lie algebroid AG. If G = M is a Lie groupoid with the Lie algebroid

_>
AG, then the triple (A, ¢, ﬁ) is a right-invariant P — gN structure on G = M.

Poisson-Nijenhuis structures on Lie groupoids are trivial Poisson quasi-Nijenhuis,
since for them the 3-form & = 0.
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ABSTRACT. The problem of Sylvester tensor equations is a crucial issue in several research ap-
plications. Krylov subspace methods are very effective approaches to solve this problems due to
their merits in large and sparse problems. We present an adaptive simpler GMRES method for
solving the Sylvester tensor equation and then obtain an upper bound for condition number of
the basis matrix. Eventually, a numerical example is conducted to illustrate the effectiveness of
the method.
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1. Introduction
In this paper, we consider the Sylvester tensor equation
(1) Xx AV 4+ X % AD 4o X xy ANV =D,

where the matrices AY) € RL*% for j = 1,2,...,n and the right-hand side tensor
D € RIvi2xxIN are given while the tensor X € R/1*/2X*In js ynknown and should
be estimated. Furthermore, notation x, denotes n-mode product which is defined
in the preliminaries section.

Recently, tensor Sylvester equations have received a great deal of attention in the
real-world applications, for example image restoration, machine learning [6, 10] and
the problems which are obtained from discretization of a linear partial differential
equation in high dimension by finite element, finite difference or spectral methods
1, 3, 8].

In the following, we review some research works in the field of the Krylov sub-
space methods to solve the Sylvester tensor equation (1). For instance, Heyouni
et al. [4] proposed the tensor format of the Hessenberg based methods, such as
Hessenbrg_BTF and CMRH_BTF. These methods are constructed based on Petrov-
Galerkin and minimal residual norm conditions, respectively. In [2], Bentbib et al.
applied the block and global Arnoldi-based Krylov projection approaches to the co-
efficient matrices in order to transform the original Sylvester tensor equation with
low rank right-hand side to a low dimensional Sylvester equation which can be solved
by any tensor Krylov subspace method.

*Speaker
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In the past decade, the GMRES method have been taken into account as the
one of the most popular algorithms for solving linear system of equations with
single right-hand side and multiple right-hand sides and so matrix equations. In
this algorithm, it requires that an upper Hessenberg least-squares problem is solved.
In order to reduce the computational cost, Walker et al. [11] suggested the simpler
GMRES approach. Although it diminishes the computational cost, it suffers from a
numerical unstability. Because, the condition number of the matrix whose columns
are a basis for the search subspace is closely related to the residual norm. This
means that when the condition number of the basis matrix increases, the residual
norm decreases at the same time or in the some sense, the basis matrix which is
constructed by the simpler GMRES algorithm is well-conditioned if and only if either
stagnation occurs or convergence slows down. To overcome this problem, Jirdnek et
al. [5] proposed a version of the simpler GMRES which generates a basis of Krylov
subspace in such a way that the condition number of basis matrix is retained in
a satisfactory level. Eventually, it called Adaptive simpler GMRES (in short Ad-
SGMRES). Inspired by this idea, we develop the Adaptive simpler GMRES based
on tensor format (Ad-SGMRES_BTF) for solving the Sylvester tensor equation (1).
Then we obtain an upper bound for condition number of the basis matrix. Finally,
to evaluate the efficiency of the proposed method, a numerical example is given.

2. Preliminaries

In this section, some basic definitions of tensors are summarized. A tensor is known
as a multi-mode array. For example, a vector or a matrix can be considered as
a 1-mode tensor or a 2-mode tensor, respectively. Throughout the paper, vectors,
matrices and tensors are shown by lower-case letters (e.g. a), upper-case letters
(e.g. A) and calligraphic letters (e.g. A), respectively. An N-mode tensor A is
represented as A € RIV2X-xIN i which each I (for kK = 1,..., N) indicates the
k-mode of A. The k-th frontal slices of an N-mode tensor A are indicated by Ay, for
k=1,...,Iy. The inner product of two tensors X,) € RI1*2X--xIn i5 defined by

oI In

(X, V)= > > .0 D> TiyigeinYirigin - Also, the corresponding norm of the tensor
i1=112=1 in=1

X is given by || X|| = \/(X, X). The notation I(™ stands for the identity matrix of

size m. Also, condition number of the matrix C'is denoted by ko(C) = ||C||2 [|C72.

In the sequel, three essential tensor multiplications are described:

DEFINITION 2.1. [7] Let X € RIvxInxxIn and ) € ROXI2X-In-1xIm he two
N-mode and M-mode tensors, respectively, ¢t € R» and U € R/*!» then

e The n-mode vector product of a tensor X with a vector t is indicated by
X Xt € RIv<-xIn—1xInt1-XIN g1 jts elements are

_ I,

(Xxnt)i1~-in_1in+1-~-iN = Zin:]_ ai1i2~~i1vtin'
e The n-mode matrix product of a tensor X with a matrix U is denoted by Ax, U &€
RO X1 I xIng1xXIN and its elements are

J— I”
(X Xn U)ilwn,ljinﬂmm - Zin:]. Wiyig-win Wi, -
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e The K™V)-product between two tensors X and ) is denoted by X KWV ) € RIvxTu
and its elements

X B0 Y], = trace (RENV ), =1 dxj =1, D

in which &X; and Y; are the i-th and j-the column slices of X and Y, respectively.
Moreover, if X € R"* and Y € R, then Y K'Y = XT)Y.

In the following lemma, some properties of tensor multiplications are given:

LEMMA 2.2. Let X, € RIvxExexInxm pe tyy0 (N + 1)-mode tensors with N -
mode column slices Xy, X, ..., Xy and Vi, Vo, ..., Yy, respectively, U € R7*In and
te RJ". Then

(A X, U)xpt = Ax, (UTE) [7].
2 X&N+1 (yx ) :(X |Z(N+1) y)t [4]

N+1

3. The Adaptive Simpler GMRES_BTF Method

In this section, we propose the Ad-SGMRES method based on tensor format for
solving the Sylvester tensor equation (1). By choosing an adaptive parameter v €
[0, 1], the basis of the tensor Krylov subspace is constructed such that the condition
number of the matrix corresponding to the basis is at an acceptable level. In the
following, the numerical stable algorithm is elaborated.

Let S be the linear mapping defined as

S . RIlXIQX"'XIN RIIXIQX"’XIN

X — S(X ZXXA

Thus, the Sylvester tensor equation (1) can be rewritten as
S(X)="D.

Besides, suppose that V is any N-mode tensor in RI1*/2X*IN then the m-th
tensor Krylov subspace associated to the pair (S,V) is defined by K,,(S,V) =
span {V,S(V),..., 8™ (V)}, where §'(V) = S(S1(V)) and S°(V) = V.

In the Adaptive simpler GMRES_BTF algorithm, the basis of the tensor Krylov
subspace is selected as follows:

Let the N-mode tensors Z; € RI*2x%-xIN for j = 1,2 ... m are a basis for the
tensor Krylov subspace K,,(A, Rg), where X, € RI1*2XXIN ig 3 given initial guess
and Ry = D — A(A}) is its corresponding residual. The basis elements are chosen
as follows:

.Forj:1,21:”77§—g”

sizes or in other words ||R;_1|| < v||R;_2||, then the tensor Z; is picked as Z; =

Hg - J > 1, wherein the residuals R;_, and R;_; are computed in the j — 2 and

(7 — 1)-th iterations.
e If the previous case does not occur, the same Arnoldi basis will be considered
as the tensor Z;, namely Z; = V;_;.

and the case that the residual norm reduces to some
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Then Arnoldi_BTF’s process [4] is applied to produce an orthonormal basis
Vi, Vo,..., V,, of the tensor Krylov subspace

A’Cm(A, Ro) = Span {.A(R()), A2<R0), N ,Am_l(Ro)} .

Suppose that V. is the (N + 1)-mode tensor with the frontal slices Vi, Vs, ..., Vp,
and U,,_; is the m x (m — 1) upper Hessenberg matrix whose nonzero entries u; ;
are computed by Arnoldi_BTF algorithm. Then the following relations hold

AZ 1=V, X nv+1) Uy

m—1

where AZ,,_; is the (N + 1)-mode tensor with the column tensors A(Z;), for j =
1,2,...,m — 1. Since the tensor Krylov subspace IC,,(A, Ry) can be decomposed
into:

K (A, Ro) = span{Ro} @D AKn_1(A, Ro),

where € denotes the direct sum. Therefore, tensors Z; = Ro/||Roll, 22, .-, Zm
form a basis for K,,,(AA, Rp). This implies that

(2) AZ, =V X(vp1) FL,

where F,,, = < 1.1 =~ ) and Z,, is the (N + 1)-mode tensor with the
O(m—l)xl Un—1

frontal slices Z, = Ro/||Roll, 22, .., Zm.

To describe the Ad-SGMRES_BTF for solving the Sylvester tensor equation (1),
assume that A is an initial guess and R is its corresponding residual. Since the
tensors Z1, Z1, ..., Z,, are a basis for the Krylov subspace IC,, (A, Ry), which satisfies
in property (2). Then the Ad-SGMRES_BTF method seeks an approximate solution

(3) Xm - X[) + ’Cm(A, RO),

such that the corresponding residual tensor R, = D — A(&,,) satisfies the follow-
ing orthogonal condition R,, LAK,, (A, Ro). It is clear that the relation (3) can be
reformulated as

X = Xo + va;((N-i-l)tmv

in which t,, € R™. Also, it follows from the first property of Lemma 2.2 and (3),
that

Ry =Ro — A(vai(N—&—l)tm) =Ro— Agm;((N—i-l)tm =Ry — ﬁm;((N—f—l)Fmtn%

where t,,, € R™ and )7m is the (N +1)-mode tensor with the column slices Vi, ..., V,,.
According to orthogonal condition and V,, RV+D V= 10" we have

0=V, KNV R, =V, KNV R, — F t,,.
As a result, Ft,, = V,, RO+ R, In addition,
Rm = 7?f[) - Ang(N—i-l)tm = 7—\)'0 - ]7m>_<(N+l) (ljm &<N+1) RO) - Rm—l - amvmv
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where a,,, = Wy, Ro) = Wi, Rin—1). Consequently, F,,t,, = ﬁm RN+ R, can be
written as

Fmtm = [Oél, Ao, ... ,Oém]T.
In fact, the above discussion is the description of the Adaptive simpler GMRES_BTF
approach. In the following theorem, an upper bound for the condition number of
the basis matrix is derived.

THEOREM 3. 1 Assume that Z,, and 9,,’1_1 are the (N +1)-mode tensors with the
Vi, Vo, et Bl and Vo V1 Vg, Vi,

IIR I’ LRIl 7 TRl

Hgl 1H’ respectively, and 1 < g < m and ¢+ 1 <1 < m. In addition, let B,

d@'ag(BLq,]m 0)s Cm d@ag(Iq,Cqm) and F, = Cpp By If Rl <+ < |Rq- 1”
then the following statements hold

z :9m X(N+1) F,nj,;,

column tensors

and
HQ(Z ) = ”2(Fm) = ’12(OmBm> < ’f2(cm)’€2(Bm)a
vec(Rqg— vec(Rm—1
where Zy, = [* ”7(QR|r) vecWVr), ..., vec(Vy—1), H7gq71||1)""’ ||7é'r7:;1” )],
m—q 52 a2 52
i + 5 sl 1 ~ BO + BO q—1
t2(Chn) <\/_CI+Z R q+ 1)27 Ko(Bpm) = k2(Big) = )
_ q+z 2 q+z 1 qul

wz’thﬁj:”R—j”forj:O,l,...,m—l.

4. Numerical Example

In this section, the numerical behavior of the Ad-SGMRES_BTF method in com-
parison to the other methods based on tensor format has been investigated from four
perspectives the number of iteration (refereed to iter.), run time (refereed to CPU),
true residual norm and true error norm. The stopping criterion for all methods is
w < 1078 or the maximum number of iteration is 501.

EXAMPLE 4.1. In this example, we evaluate the efficiency of the proposed method
against the other methods SGMRES_BTF, GMRES_BTF and FOM_BTF. Here,

the matrices A1, A® and A® [9] are obtained by the following Matlab commands
AW = gallery('poisson’, ng) € R™™ A® = gallery('pei’, n, o) € R™",
A® = fdm_2d_matriz(ng, sin(zy), e, y* — z?) € R™",
with n = n2. In addition, the initial guess X is taken zero tensor, the right-hand
side tensor D is selected such that tensor X* = randn(n,n,n) is the exact solution
of the Sylvester equation (1). Also, m = 20, n = 64,100 and v = 0.9 are taken.

As observed in Table 1, the Ad-SGMRES_BTF method is superior to the other
methods in terms of the CPU time.
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TABLE 1. The obtained results of the Ad-SGMRES_BTF, SGMRES_BTF,
GMRES_BTF and FOM_BTF methods.

Grid | Method fter. CPU  [Rull 1A% — A7]
Ad-SGMRES_BTF | 30 92,944 1.7934e-05 5.3811e-06
SGMRES_BTF 30 103.68 1.7934e-05 5.3811e-06

64 x 64 x 64 | GMRES_BTF 30 93.143 1.5925e-05 4.3193e-06
FOM_BTF t t + t
Ad-SGMRES_BTF | 35 41.688 9.1304e-06 2.3673e-06
SGMRES_BTF 35  42.883 9.4081e-06 2.3162e-06

49 x 49 x 49 | GMRES_BTF 35  42.554 9.4081e-06 2.3162e-06
FOM_BTF 61 86.587 3.1740e-06 1.1592e-07
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ABSTRACT. Let G be a finite non-abelian group and m = % In this paper, we prove that
if G is a finite non-abelian m-centralizer CA-group, then there exists an integer r > 1 such that
m = 2". It is also prove that if |G’| = 2, then G is an m-centralizer group.
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1. Introduction

Throughout, all groups are assumed to be finite. Let G be a group. Then by Z(G),
G', |G|, Cq(z), Cent(G) and 2% we denote the center of G, the order of G, the
derived subgroup of GG, the centralizer of x € (G, the set of centralizers of G and the
conjugacy class of x € G respectively. We consider two equivalence relations on G
namely ~; and ~y. We say x ~ y if and only if Cg(x) = Cg(y). Also x ~y y if and
only if zZ(G) = yZ(G). The equivalence class including x is denoted by [z].. The

number of equivalence classes of ~; and ~y on G are equal to |Cent(G)| and %
respectively. A group G is called m-centralizer if |Cent(G)| = m. The influence of
|Cent(G)| on G has been investigated in [1, 2, 3]. It is clear, by definition, that a
group G is 1-centralizer if and only if it is abelian. There is no finite m-centralizer
groups for m € {2,3}. A non-abelian group G is called a CA-group if Cg(z) is
abelian for all z € G\ Z(G). The main purpose of this paper is to study m-

centralizer CA-groups, where m = % and m # 2,3. We show that a non-abelian
group G is m-centralizer if and only if [z]., = [z]., for all z € G. Also, if G is

an m-centralizer CA-group, then there exists an integer » > 1 such that m = 2.
Conversely, for an arbitrary integer r > 1, there exists an m-centralizer CA-group,
where m = 2". It is also prove that if |G| = 2, then G is an m-centralizer group.

2. Main Results

LEMMA 2.1. A non-abelian group G is said to be an m-centralizer group, where
m = —‘Z|(GG‘)‘ if and only if [x]~, = [z]~, for allz € G.

LEMMA 2.2. Let G be a non-abelian group. Then the following statements are
equivalent.
1) Iflz,y] =1, then [z]., = [y]~,, where z,y € G\ Z(G).
i) G is a CA-group and [x]., = [z]~, for all x € G.

*Speaker
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111) [f [Iay] =1 and [wi] = 17 then [y]’\'z = [w]N27 where T, Y, w € G\Z(G)

LEMMA 2.3. Let G be a non-abelian group. Suppose that [z]., and [y]., are two
different classes of relation ~y. If [xo,yo| # 1, where xy € [x]~, and yo € [y]~,, then
[u,v] # 1 for allu € [x]~, and v € [y]~,. Also [x1, 23] =1 for all x1,x5 € [z]~,.

THEOREM 2.4. Let G be a non-abelian group and |G'| = 2. Then G is an m-

centralizer group, where m = 3.
group, Z(@)]

THEOREM 2.5. Let G be a non-abelian group. Then Cq(x) = Z(G)UzZ(G) for

all z € G\ Z(QG) if and only if G is an m-centralizer CA-group, where m = ‘Z‘%)‘.

EXAMPLE 2.6. The dihedral group Dg is a CA-group and Cp,(z) = Z(Dg) U
xZ(Dg) for all x € Dg \ Z(Ds).

THEOREM 2.7. Let G be a non-abelian group. Then the following statements are

equivalent.

i) G is an m-centralizer CA-group, where m = |Z|%)

ii) G = Ax P, where A is an abelian group and P is a 2-group, CA-group and
m-centralizer, where m = %

iii) G = A x P, where A is an abelian group, P is a p-group and Cp(z) =
Z(P)UaxzZ(P) for allz € P\ Z(P).

THEOREM 2.8. Let G be an m-centralizer CA-group, where m = % Then

there exists an integer r > 1 such that m = 2". Conversely, for an arbitrary integer

r > 1, there exists an m-centralizer CA-group, where m = |Z|(Gc|:)| =2
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ABSTRACT. In this work, we consider geometric reflections based on elements of a reflectable
base of an extended affine root system R, and prove that in type A1, any geometric reflection of
a reflectable base is a Cayley graph-reflection if and only if the nullity of R is less than or equal
one. Also we show that any extended affine root system R, is a union of extended affine root
systems of type A; with the same nullities as the nullity of R.
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1. Introduction

In the past three decades there has been an intensive investigation on the theory
of extended affine Lie algebras and related objects such as root systems and Weyl
groups, see for example [1, 2, 3]. Root systems and Weyl groups occupy a big
portion of the theory of extended affine Lie algebras; in addition to their importance
in the study of the structure of Lie algebras and their classification, they are of much
interest because of their combinatorial nature and independent applications in other
branches of mathematics and theoretical physics.

Weyl groups are a subclass of groups generated by (geometric) reflections. In
this work we present a new characterization of geometric reflections by merging the
theory of extended affine Weyl groups, the covering theory of Cayley graphs in the
sense of [6] and [7] and the theory of Coxeter systems, see [5].

In [6], the authors give a new characterization of Coxeter groups by using a
refined notion of a Cayley graph, introduced in 2000 by Malnic, Nedela and Skoviera
[7]. An application of this new notion of graph appears in the theory of Cayley
graphs. In 2007, Gramlich, Hofmann and Neeb used the new notion of graph to
show that any Cayley graph is a regular 1-cover of a monopole and vice versa [6].

To achieve are main result, we need to introduce some notions. We use [1, 4, 6]
for these notions. In this work we assume that all vector spaces are finite dimensional
real vector spaces. We denote by V*, the dual space of the vector space V. Let V be
a vector space equipped with a positive semi-definite symmetric bilinear form (-, ),
and VY denote the radical of the form. Also assume that dim(}V°) = v. Let R C V.
Set R = RNV and R* = R\ R".

DEFINITION 1.1. [1, Definition I1.2.1] R is called an irreducible reduced extended
affine root systemif 0 € R, R = —R, Rspans V, if « € R*, then 2a € R, R satisfies
in the root string property, R* can not be decomposed as R; W Ry, where Ry and R»
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are non-empty subsets of R* satisfying (R, Re) = {0} (here R is called connected),
and finally if 0 € R°, then there exists o« € R* such that o + 0 € R.

One can check that R° = {a € R | (o,a) =0} and R* = {a € R | (o, a) # 0}.
The integer v is called the nullity of R. It is clear from axioms that irreducible
reduced finite root systems are extended affine root systems of nullity zero. From
[1, Chapter II], one can always find a finite root system R contained in R. The type
and the rank of R is called the type and the rank of R respectively.

From now on, we want to focus on type A;. Let {0, %€} be a finite root system
of type A;. By [1, Chapter 1], if R is an extended affine root system of type A;
and nullity v > 0, then R has the following structure

(S+9) | Jxe+9),

where S is a semilattice(lattice) in VP (see [1, Definition I1I.1.2]). From [1, Propo-
sition IT.1.11], if S is a semilattice in VY, then the lattice A := (S) have a basis
consists of elements of S. We show this basis with B = {oy,...,0,} and fix it in
this work. By [1], we have S = U (1;4+2A), where m > v, 7o = 0 and for 1 < i < v,
7, =o0; and for i > v, 7, = > n;,0, with n;, € {0,1} and at least two n;, # 0.
Furthermore 7, ..., 7, generate A. Set

(1) M= {ag:=ca=7—€|1<i<m}

We want to use (1) in the sequel.

To define the notion of an extended affine Weyl group, we set V = SpanRR;
then V = V@ V. Now set V = V@V @ (V°)*, and extend the form on V to a
nondegenerate form on V. Now for a € V with (a, @) # 0, we define w, € End(V)
such that we(8) = 8 — (8, a@")a where a¥ = 2a/(a, @).

DEFINITION 1.2. The extended affine Weyl group W of R is defined to be the

subgroup of GL(V) generated by elements w,, a € R*. Furthermore any elements
Wa, @ € R*, is called a geometric reflection. We denote the center of W with Z(W).

It is known that, if R is an extended affine root system of type A; of nullity v,
then any elements of VW has the unique expression as follow:

(2) w = w?ﬁtﬂl’“z,
r=1

where n € {0,1}, m, € Z and t, := Weiy, We.

DEFINITION 1.3. [4, Definition 1.9] Assume that R is an extended affine root
system and WV is the corresponding Weyl group. A subset II of R* is called a
reflectable base if Wpll = R* and no proper subset of Il has this property. We
mean Wy = (w, | a € 1I).

From [2, Proposition 4.26], [4, Theorem 3.1], if IT is as (1), then II is a reflectable
base of R.

We need to introduced the notion of a graph in the sense of [7]. A graph I is a
4- tuple (V, D, 1, \) where V' is a non-empty set of vertices, D is a set, which might
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be empty, called the set of darts. Alsot: D — Visamapand A : D — D is a
permutation of order 2. For every dart d, «(d) is called the initial vertex of d and
A(d) , denoted by d~1, is called the reverse of d. The vertex t(d™') is called terminal
vertex of d.

DEFINITION 1.4. For an automorphism o of a connected graph I' = (V, D, ¢, \)
set Fix, (V) := {v € V | 0(v) = v} and Norm,(D) := {d € D | d # o(d) = d~'}.
The sets Fix, (V) and Norm, (D) are called the set of fized vertices and the set of
normalized darts of I' with respect to the automorphism o, respectively.

DEFINITION 1.5. An automorphism o of a connected graph I' = (V, D, , \)
is called a graph-reflection on T, if 0 = 1, Fix,(V) = ( and the graph T', =
(V, Dy, 5, Ay) with D, = D\ Norm, (D) and ¢, = ¢ |p,, A\ = A |p,, is disconnected.

DEFINITION 1.6. Let G be a group and X C G\ {lg} be a symmetric generating
set of G, that is, X = X! and G = (X). The Cayley graph Cay(G, X) is the 4-tuple
(G,G x X,1,—1) where t(g,7) := g and (g,z)"' = (gz,z71).

The following theorem gives a new characterization of a Coxeter group in terms
of its Cayley graph (see [5] for definition of a Coxeter group).

THEOREM 1.7. [6, Theorem 7.6] The following statements are equivalent:

1) (G,X) is a Coxeter system.
2) The elements of X act as graph-reflections on Cay(G, X).

2. Main Results

Let I' := Cay(G, X) be the Cayley graph of (G, X). The group G acts on I' by
left multiplication and this action is regular, so we can consider G as a subgroup of
Aut(T). Suppose 1 # o € Aut(T) is such that 0> = 1. From Definition 1.4, we have

Norm, (G x X) ={(g,2) € G x X | (¢9,z) # 0(g,z) = (g9x,x)}.
We note that d € Norm, (G x X) if and only if d~! € Norm, (G x X).
LEMMA 2.1. Let ' € X. Then (g,x) € Norm, (G x X) if and only if x'g = gx.

LEMMA 2.2. Suppose g is an arbitrary vertez of the Cayley graph T' = Cay (G, X).
Then with respect to an involution x € X, there is at most one normalized dart in
I with wnitial vertex g.

Let R be an extended affine root system of type A; and nullity v > 0 with
extended affine Weyl group W. Consider (1) and (2). Assume that I is the Cayley
graph of W with respect to the generating set Sy := {w, | o € IT}.

THEOREM 2.3. Suppose W is an extended affine Weyl group of type Ay with
nullity v, and I is the Cayley graph of W with respect to the generating set Sy, then
for 0 <1 < m we have,

Normy, (W x Sn) = {(w,wa,) | w € wy 2, 2 € Z(W), n € {0,1}}.
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THEOREM 2.4. Let R be an extended affine root system of type Ay of nullity v,
IT be the reflectable base of R introduced in (1) and o € II. Then the geometric
reflection w, is a graph-reflection of the Cayley graph of (W, Sn) if and only if
v <1.

Now as a consequence of Theorems 1.7 and 2.4 we have the following theorem.

THEOREM 2.5. Let R be an extended affine root system of type Ay of nullity v,
and W be its corresponding Weyl group. Assume 11 is a reflectable base of R. Then
(W, Sn) is a Cozeter system if and only if v < 1.

REMARK 2.6. Note that in this paper, we consider an especial reflectable base of
an extended affine root system R of type A;, but we can prove that any reflectable
base of R is of the form II = {r;7; + s;¢ | 0 < i < m}, where r;,s; € {£1} and
{70, ..., Tm} is a set of coset representatives for S, namely S = W ,(7; + 2A). Thus
we can extend Theorems 2.3 and 2.4 for general case.

We focus on type A; because, by using the following theorem we have any ex-
tended affine root system is a union of extended affine root systems of type A;.

THEOREM 2.7. Let R be an extended affine root system of type X of nullity v
and a € R*. Set So, := {0 € V' | a+ 0 € R} and R, := (Sa + Sa) U (£a + S,).
Then R, is an extended affine root system of type A1 of nullity v and R = Uycpx Ry

COROLLARY 2.8. Let R be an extended affine root system of type X # BCy and
nullity v > 1, with extended affine Weyl group W and assume 11 C R* such that St
is a generating set of W. Then there exist geometric reflections in Sy, which are
not Cayley graph-reflections on Cay(W, Sn).

3. Examples

This section is devoted to some examples elaborating on the results in the previous
sections.

ExXAMPLE 3.1. The following graphs in Figure 1, show the Cayley graphs of
extended affine Weyl groups of nullities v = 0, 1,2, respectively. The normalized
darts of some geometric reflections show in dashed lines.

ExAMPLE 3.2. This example extends Example 3.1 to simply laced extended
affine Weyl groups of rank and nullity > 1, namely it shows that any geometric
reflection corresponding to the considered underlying reflectable base, is not a Cayley
graph-reflection. To show this, let R be an extended affine root system of simply
laced type X, rank ¢ > 1 and nullity » > 1. We know that R = R + A where R is
an irreducible finite root system of type X and A is a lattice of rank v. We fix a
basis II = {4, ..., a0} of R and a Z-basis {01, ...,0,} of A. Set a := q; for some
1 < i < /{ and fix it. From [2, Lemma 4.24] (also see [4, Lemma 1.21(i)]), we know
that

(X)) :={aq,...,ap,01 —,...,0, — a},
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is a reflectable base for R. We set oy = 0, and
S :=U_y(o;+2A) and Ry = (S + S)U (£a + 5).

Then S is a semilattice in A, and R, is an extended affine root system of type A; and
nullity v. By Remark 2.6, 11, := {a, 01 — @, ..., 0, — a} is a reflectable base for Ry.
We denote the Weyl group of Ry, by W,. Since W, C W and I, C II(X), the Cayley
graph I'y :== Cay(W, Sii,) is a subgraph of the Cayley graph I' := Cay(W, Su(x)).
Since v > 1, we see from Theorem 2.4 that for 5 € 11, the geometric reflection wg is
not a Cayley graph-reflection of I',. It is easy to see that wgs is not a Cayley graph
reflection of I', too.

- ———————- °
1 x
T1ToT1 T1To T3 1 Ty ToTi ToT1To
——eo o o---0—0—9°

F1GURE 1. The Cayley graphs of extended affine Weyl groups, type Aj.
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ABSTRACT. We consider finite groups Hy, and Gy, as follows:
2
Hpy = <x,y\xm =y" =1y lay= fc”m> ,m> 2,
Gmn =(z,yla™ =y" =1, [z, y]" = [z, y], [z,9]Y = [z,y]) m,n>2.
In this paper, we first study the groups H,, and Gy,n. Then by using the properties of Hp,,
Gmm and t—nacci sequences in finite groups, we show that the period of t—nacci sequences in
these groups are a multiple of Wall number K (t,m).

Keywords: Finite group, Nilpotent groups, t—Nacci sequences, Wall number.
AMS Mathematical Subject Classification [2010]: 05C25, 20F05, 20D60.

1. Introduction

Fibonacci numbers and their generalizations have many applications in every field
of science and art; see for example, [5]. Fibonacci numbers F,, are defined by the
recurrence relation Fy =0, Fy =1, F,, = F,,_s + F,_1,n > 2. For any given integer
t > 2, the t—step Fibonacci sequence F,,(t) is defined [6] by the following recurrence
formula:

Fo(t) = Froi(t) + Fumpa (t) + - - + Fooa (1),
with initial conditions Fo(t) = 0, Fi(t) = 0,...,F;_o(t) = 0 and F,_1(t) = 1. Re-
ducing the t—step Fibonacci sequence F,,(t) by a modulus m, we can get a periodic
sequence defined by F,(t,m) = F,(t) (mod m). Following Wall [1], one may also
prove that F,,(t,m) is periodic sequence. We use K(t,m) to denote the minimal

length of the period of the sequence F,,(t,m) and call it Wall number of m with
respect to t—step Fibonacci sequence. For example, for

{Fn(4>}2280 = {07 07 07 ]-7 17 27 47 87 157 297 tee }7
by considering
{Fn<4) mOd 2}2280 = {07070717 17Q707O7 1717"'}7

we get K(4,2) =5.

The Fibonacci sequences in finite groups have been studied by many authors;
see for example, [2]. We now introduce a generalization of Fibonacci sequence in
finite groups which first presented in [6] by Knox.
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DEFINITION 1.1. Let j < t. A t—nacci sequence in a finite group is a sequence

of group elements xg, z1, ..., %,,... for which, given an initial set {zo, z1,...,2;_1},
each element is defined by
o= ToL1 ... Tp—1, j§n<t,
" Tpn—tTp—t+1--- Tp-1, n >t.
Note that the initial set {zo,z1,...,2;_1}, generate the group. The t—nacci

sequence of G with seed in X = {xg,21,...,2;_1} is denoted by F,(G; X) and its
period is denoted by LEN,(G; X), see [3].
Now, we consider
Hy, = <“%y|xm2 =y" =1y lry = $1+m> , m 22,
Gm :Gmm = <Iay|$m = ym = 17 [l,’y]z = [1'7?/]7 [xay]y = [IayD , m> 2.

For every t > 3, to study the t—nacci sequences of H,, and G,,, we define the
sequences {71, (t)}5° and {g,(t)}5° of numbers, respectively, as follows:

To(t) =To(t —1),..., Ty(t) = Ty(t — 1), Ti1(t) = Fryea(t — 1) + Ty (t — 1);
To(t) =Tot(t) + Topia (t) + -+ + T ()
+Fa(t) + Fls(0)

+E7 () = Fus(t) (Fugi—a(t) = Fuys(t)); n >t + 1.

9o(t) =g1(t) = g2(t) = 0,95(t) = gs(t = 1),..., gr41(t) = gesa (t — 1);
9n() =gn—t(t) + gn-t41(t) + gn-t42(t) + - + gn1(¢)

+ 3 (t) (F-1(t) — Foalt))

F(Fn—s(t) + Foa(t)) (Fu(t) — Fooa())

+(Fnos(t) + Fuoa(t) + Fooa (1) (Frga () — Fu(t))

F(Faslt) + Fualt) + Faa(t) + Ful) (Frsolt) — Fun(0)

F(F=s(t) + -+ Fos(8)) (Frre—3(t) — Foge-a(t)); n >t + 1.

The 2—nacci length and 3—nacci length of H,, and G,, were investigated in
[2, 3]. In this paper, we study the t—nacci sequences of H,, and G,,. Section 2
is devoted to the some preliminary results that are needed for the main results of
this paper. In Section 3, we generalize 3—nacci sequences idea to t—nacci sequences
(t > 4).

2. Some Preliminaries

We have collected the technical results that lead to the main results of this Section.
For given integers m > 2 and t > 4, let F; = F;(t,m), K(m) = K(t,m). Then we
have the following results:
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LEMMA 2.1. The following relations are satisfied about t—step Fibonacci se-
quence:

(1) Fn—t +2 (an(tfl) + an(th) +-+ Fn—l) = Fn+1>
(ii) Foo1+ Fope = 26, ¢-1)-

LEMMA 2.2. For integers n,i and m with m > 2, we have
(i) Fr(m)+i = F; (mod m),
(ii) Frk(m)+: = Fi (mod m).

COROLLARY 2.3. For integers n and m > 2, if

F, =0 (mod m),
Foii2 =0 (mod m),
F.iio1 =1 (mod m).

Then K(m) |n.

We need some results concerning the groups H,, and G,,,. First, we state a

lemma without proof that establishes some properties of groups of nilpotency class
two, where [z,y] = 7'y lzy.

LEMMA 2.4. If G is a group and G' C Z(G), then the following hold for every
integer k and u,v,w € G:
(i) [uv,w] = [u, w][v,w] and [u, vw] = [u, v][u, w].
(ii) [uf,v] = [u,v*] = [u,v]".
(iii) (uv)* = ukvk[v, u]FE-1/2,
COROLLARY 2.5. Let G = H,,. Then

(i) every element of H,, can be uniquely presented by y"x*, where 0 <r < m—1
and 0 < s <m? — 1.

(i) |G| = m3.
(111) xsyr — yrxs-i-mrs.
The following propositions are of interest to consider and one may see the proof
in [2].
PROPOSITION 2.6. Let G = H,,. Then Z(G) = G ~ (z|z" =1).
ProproOSITION 2.7. Let G = G,y Then
(i) G'= ([a, b]).

(ii) Every element of G is in the form x'y’g, where 0 < i1 < m —1,0 < j <
n— land g € G

(iii) Z(G) = (z,y, 2[a™" = y/* = 2 = [1,y] = [w,2] = [y, 2] = 1).
For the particular case, consider m = n then for m > 2 we get
G = G = (@, ylz™ = y™ = 1, [2,9]" = [2,9], [2,4]" = [2,9]) -
COROLLARY 2.8. With the above facts, we have
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(1) |G| =m®, Z(Gn) = G, 1Z(G)| = m.
(ii) Every element of Gy, can be written uniquely in the form x"y*[y, z]', where
0<rst<m-—1.

3. The t—Nacci Sequences of H,, and G,

In this section, we examine the t—nacci sequences of H,, and G,,, with respect to the
ordered generating set X = {z,y}. First, we show that every element of F;(G; X)
has a standard form. The following Lemma is of interest to consider and one may
see the proof in [4].

LEMMA 3.1. For every t > 4 and n > 3, each element x,(t) of the t—nacci
sequences of groups H,, can be written in the form

Tn (t) — yFnthfs (t) an+t72 ()= Fppt—3(t)+mTn(t) '

We denote the period of Fy(H,;x,y) by P, i.e. P(H,;x,y) = P and we have
the following corollary:

COROLLARY 3.2. For every m > 2, K (t,m) | P.
In what follow, we study the t—nacci sequence of G,,.

THEOREM 3.3. For every t > 4 and n > 3, each element x, of the t—nacci
sequences of groups G, can be written in the form

2 (t) = an+t72(t)_Fn+t73(t)yFn+t—3(t) [y,ZE]g"(t).
THEOREM 3.4. If LEN(G,,; X) = P then the equations
Fp =0 (mod m),

hold. Moreover, K (t,m) divides P.

Here, by using a program written in the computer algebra system GAP [7], we
checked that for every t = 3,4 and 2 < m < 10

LEN,(H,,) = K(t,m?).
Also, for every prime number p

2K(t,p), p=2,
K(t,p), p#2.

Note that this formula, may be generalized for n = pi™* ...p%; i.e. in this case
we have LENy(Gr) = l.e.m{LEN(Ge1),..., LENy(Gpes)}. Some of these results

are shown below:

LEN,(G,) = {
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7.

Table 1: The period of t—nacci sequences of H,,.

| Table 1 |
] m \ LEN;(H,,) H K(3,m?) \ LEN,(H,,) H K(4,m?) ‘
2 8 K(3,2%) 10 K(4,2%)
3 39 K(3,3?) 78 K(4,3%)
4 32 K(3,4%) 40 K(4,4%)
5 155 K(3,5%) 1560 K(4,5%)
6 312 K(3,6%) 390 K(4,6%)
7 336 K(3,7%) 2394 K(4,7%)
8 128 K(3,8?) 160 K(4,8%)

9 351 K(3,9%) 702 K (4,9
10 1240 K(3,10%) 1560 K(4,10%)
Table 2: The period of t—nacci sequences of G,, code.
’ Table 2 ‘
(m [LEN;(Gy) [ KG.m) | LENA(Go) [ K(&,m)
2 8 4 10 5
3 13 13 26 26
4 16 8 20 10
8 32 16 40 20
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ABSTRACT. In this article we generalize the notion of classical weakly prime submodules to
modules over arbitrary noncommutative rings. We define a proper submodule N of an R-
module M to be classical weakly prime submodule if whenever ;s € R and K < M with
0# rRsK C N, then rK C N or sk C N. We investigate some properties of these submodules
and their structure in different classes of modules. In particular, this yields characterizations of
classical weakly prime submodules in multiplication modules and also modules over duo rings.
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1. Introduction

Throughout this article all rings are associative with identity element and all modules
are unital. Anderson and Smith [1] studied weakly prime ideals for a commutative
ring with identity. They defined a proper ideal P of a commutative ring R to be
weakly prime ideal if 0 # ab € P implies a € P or b € P; and then it is proved
[1, Theorem 3] that the following statements are equivalent for an ideal P of a
commutative ring R,

(a) P is weakly prime.
(b) for ideals A and B of R, 0 # AB C P implies A C P or B C P.

For rings that are not necessarily commutative, it is clear that (b) does not imply
(a). In [7], Hirano et al. said that a proper ideal P of R is weakly prime ideal
provided that 0 #£ IJ C P implies either I C P or J C P, for any ideals [ and J of
R. Equivalently, P is weakly prime if 0 # aRb C P, for some a.b € R, then a € P
or b € P, see [7, proposition 2].

Weakly prime submodules of a module over a commutative ring were introduced
by Ebrahimi Atani and Farzalipour in [6]. A proper submodule N of M is called a
weakly prime submodule if 0 # am € N, for some a € R and m € M, then m € N
or aM C N.

Behbboodi and Koohi introduced weakly prime submodules in [5]. A proper
submodule P of M is called a weakly prime submodule if whenever K C M and
rRsK C P, where r, s € R, then either rK C P or sK C P. If R is a commutative
ring, then a proper submodule P of R-module M is a weakly prime submodule if and
only if for any elements a,b € R and m € M, abm € P implies am € P or bm € P.
It is also clear that each prime submodule is weakly prime but not conversely, see [5,
Example 1]. This notion of weakly prime submodules has been extensively studied
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by Behboodi in [2, 3, 4], although in [2, 3], the notion of weakly prime submodules
is named classical prime submodules.

The concept of weakly classical prime submodules of modules over commutative
rings were introduced by Mostafanasab, Tekir and Oral in [8]. A proper submodule
N of an R-module M is called a weakly classical prime submodule if whenever
a,b € Rand m € M with 0 # abm € N, then am € N or bm € N.

For every submodule N and K of an R-module M, we denote by (N :p K) the
subset

{a € R|aK C N},

of R, which is an ideal of R. The annihilator of K, which is denoted by Anng(K),
is (0 :gp K). If Anng(K) = 0, then K is called a faithful submodule of M. In
particular, if Anng(M) = 0, then M is called a faithful module. We know that R
is a right (left) duo ring if every right (left) ideal of R is an ideal. In this paper we
introduce the concept of classical weakly prime submodule as a generalization of the
notion of weakly classical prime submodule and weakly prime submodule. Also, we
obtain some basic properties of classical weakly prime submodules. Then, we shall
characterize structure of classical weakly prime submodules of modules over duo
rings and we study some properties of these submodules of multiplication modules.
Finally, we introduce the concept of fully classical weakly prime modules and study
their structure.

Let R be a ring. If N is a submodule of an R-module M, we write N < M.
Also, for each element a € R, (a) denotes the principal ideal of R generated by a.

2. Main Results

DEFINITION 2.1. A proper submodule N of an R-module M is called a classical
weakly prime submodule if whenever r,s € R and K < M with 0 # rRsK C N,
then rK C N or sK C N.

THEOREM 2.2. Let M be an R-module and N be a proper submodule of M. The
following conditions are equivalent:

1) N is classical weakly prime;
2) For every ideals I and J of R and K < M, if 0 # IJK C N, then either
IKCNorJKCN.

However, the zero submodule is always classical weakly prime by definition.

COROLLARY 2.3. Let M be an R-module and N be a proper submodule of M. If
(N g K) is a weakly prime ideal of R, for every submodule K of M which is not
contained in N, then N is a classical weakly prime submodule.

Furthermore, it is clear that every weakly prime submodule is a classical weakly
prime, but the following example shows that the converse is not true in general.

EXAMPLE 2.4. Consider Z-module M = Z, ® Z, ® Q, where p and ¢ are two
distinct prime integers. Notice that pq(1,1,0) = (0,0,0), but p(1,1,0) # (0,0,0)
and ¢(1,1,0) # (0,0,0). Then the zero submodule of M is not weakly prime.
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PROPOSITION 2.5. Let R be a ring and I be a proper ideal of R. Then the
following conditions are equivalent:
1) I is a weakly prime ideal of R.
2) I is a classical weakly prime submodule of rR.

THEOREM 2.6. Let f : M — M’ be a homomorphism of R-modules. Then the
following statements are hold:

1) If f is a monomorphism and N' is a classical weakly prime submodule of M’
for which f~Y(N') # M, then f~Y(N') is a classical weakly prime submodule
of M.

2) If f is an epimorphism and N is a classical weakly prime submodule of M
containing Ker(f), then f(N) is a classical weakly prime submodule of M’.

As an immediate consequence of Theorem 2.6(2) we have the following result.

COROLLARY 2.7. Let M be an R-module and L C N be submodules of M. If N
is a classical weakly prime submodule of M, then N/L is a classical weakly prime
submodule of M/ L.

THEOREM 2.8. Let M be an R-module and K and N be proper submodules of
M with K C N. If K is a classical weakly prime submodule of M and N/K is
a classical weakly prime submodule of M/K, then N is a classical weakly prime
submodule of M.

THEOREM 2.9. Let M be an R-module and N be a classical weakly prime sub-
module of M. Then the following statements hold:
1) If K is a faithful submodule of M which is not contained in N, then (N :g K)
1s a weakly prime ideal of R.
2) If Ann(M) is a weakly prime ideal of R, then (N :g M) is a weakly prime
ideal of R.

COROLLARY 2.10. Let M be an R-module and N a classical weakly prime sub-
module of M. For every m € M\ N, if Ann(Rm) = 0, then (N :g Rm) is a weakly
prime ideal of R.

THEOREM 2.11. Let My and Ms be R-modules and M = My x M,y. If N =
Ny x Ms is a classical weakly prime submodule of M, for some submodule Ny of M,

then Ni is a classical weakly prime submodule of My. Furthermore, for eachr,s € R
and Ky < My, if rRsK, =0, rK1 € Ny and sKy € Ny, then rRs C Ann(M>).

Let R be a ring. An R-module M is called a multiplication module if every
submodule N of M has the form IM, for some ideal I of R (see [10]). We know
that M is a multiplication R-module if and only if N = (N :x M)M, for every
submodule N of M.

PROPOSITION 2.12. Let M be a multiplication R-module and N be a proper
submodule of M. If (N :g M) is a weakly prime ideal of R, then N is a classical
weakly prime submodule of M.

The following result is a direct consequence of Theorem 2.9 and Proposition 2.12.
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COROLLARY 2.13. Let M be a faithful multiplication R-module and N be a proper
submodule of M. Then N is a classical weakly prime submodule if and only if
(N :g M) is a weakly prime ideal of R.

THEOREM 2.14. Let N be a classical weakly prime submodule of an R-module
M. If N is not weakly prime, then (N :x M)*N = 0.

Also, the following result obtains from Theorem 2.14.

COROLLARY 2.15. Let M be a faithful multiplication R-module and N be a clas-
sical weakly prime submodule of M. If N s not a weakly prime submodule of M,

then (N :g M)?> = 0.

PROPOSITION 2.16. Let M be a faithful multiplication R-module and N be a
proper submodule of M. Then the following conditions are equivalent:

1) N is a classical weakly prime submodule.

2) (N :g M) is a weakly prime ideal of R.

3) N = PM, where P is a weakly prime ideal and it is maximal with respect
to this property (i.e., IM C N implies that I C P).

Let M be an R-module and N be a submodule of M. For every a € R, we
denoted by (N :js a) the subset {m € M | am € N} of M. We recall that a ring R
is called a left duo ring if all left ideal of R is two sided ideal. It is easy to see that if
R is a left duo ring, then xR C Rz, for each © € R. Therefore, if M is a module over
left duo ring R, then for every submodule N of M and a € R, the subset (N :y a)
is a submodule of M containing N.

THEOREM 2.17. Let R be a left duo ring, M be an R-module and N be a classical
weakly prime submodule of M. If 0 # abm € N, for some a,b € R and m € M,
then am € N orbm € N.

A submodule N of an R-module M is called u-submodule of M, provided that
N contained in a finite union of submodules must be contained in one of them. M
is called u-module if every submodule of M is a u-submodule (see [9]).

THEOREM 2.18. Let R be a left duo ring and M be a u-module over R. The
following statements are equivalent for every proper submodule N of M :

1) N is a classical weakly prime submodule.

2) For each m € M and every a,b € R, if 0 # abm € N, then am € N or
bm € N.

3) For every a,b € R, one of the following holds:

i) (N :p ab) = (0 :p7 ab)

ii) (N :pr ab) = (N :pr a)

4) For every a,b € R and every K < M, if 0 # abK C N, then aK C N or
bK C N.

5) For every a € R and every submodule K of M, if aK ¢ N, then (N :g
aK)=(0:gaK) or (N:gaK)= (N g K).
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6) For every a € R, every ideal I of R and every submodule K of M, if
0#IaK CN, thenaK CN or IK CN.

7) For every ideal I of R and every submodule K of M, if IK ¢ N, then
(N ‘R IK) = (O ‘R IK) or (N ‘R [K) = (N ‘R K)

REMARK 2.19. Let R be a left duo ring and [ be an ideal of R. It is easily seen
that the subset {r € R | 3n € N;7™ € I} of R is an ideal of R containing I, denoted

by V1.

PROPOSITION 2.20. Let N be a classical weakly prime submodule of an R-module
M which is not weakly prime. Then the following statements are hold:
1) (N :g M) C Ann(M).
2) If R is a left duo ring, then \/Ann(M) = /(N :gr M).

Recall that R is a fully weakly prime if every proper ideal of R is weakly prime
[7]. We call an R-module M a fully classical weakly prime module if every proper
submodule of M is a classical weakly prime submodule. A ring R is called a fully
classical weakly prime ring if R itself is a fully classical weakly prime left R-module.
For example, every module over a simple ring R is fully classical weakly prime
module.

THEOREM 2.21. Let R be a ring. Every R-module is fully classical weakly prime
if and only if R is fully weakly prime ring.

PROPOSITION 2.22. Let M be an R-module. Then M is a fully classical weakly
prime module if and only if for each submodule K of M and each ideal I,J of R,

IJK =0o0r IJK =JK CIK or IJK =1IK C JK.

PROPOSITION 2.23. Let M be a multiplication R-module. If M is a fully classical
weakly prime module, then M has at most two maximal submodules.

COROLLARY 2.24. Let M is a multiplication and fully classical weakly prime
R-module. If Ny = IM and Ny = JM are two distinct submodules of M, then N,
and Ny are comparable by inclusion or INys = JNy = 0. In particular, if Ny and No
are two distinct maximal submodules, then INy = JN; = 0.
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1. Introduction

Systems of linear equations play a fundamental role in numerical simulations and
formulization of mathematics and physics problems. Solving these systems is among
the important tasks of linear algebra. There are widespread appearances and appli-
cations of linear systems over “max —plus algebra” in various areas of mathematics,
engineering, computer science, optimization theory, control theory, etc. (see e.g.
[2, 3, 4]). The algebraic structure of semirings are similar to rings, but subtraction
and division can not necessarily be defined for them. The first notion of a semiring
was given by Vandiver [5] in 1934. In this work, we present a necessary and sufficient
condition based on the associated normalized matrix, which is obtained from a pro-
posed normalization method. Furthermore, if the system AX = b has solutions, we
use the associated normalized matrix to determine the degrees of freedom of the sys-
tem. Note that for convenience, we mainly consider S = (RU{—o0}, max, +, —00, 0)
which is called “max —plus algebra” and denote by R,.x +, whose additive and mul-
tiplicative identities are —oo and 0, respectively.

2. Definitions and Preliminaries

DEFINITION 2.1. [1] A semiring (S, +,.,0, 1) is an algebraic structure in which
(S, +) is a commutative monoid with an identity element 0 and (5, .) is a monoid with
an identity element 1, connected by ring-like distributivity. The additive identity
0 is multiplicatively absorbing, and 0 # 1. A semiring is called commutative if

a-b=>b-aforall a,be S.

For any A = (a;j) € Mypxn(S), B = (bij) € Myxn(S), C = (¢;5) € My(S) and
A € S the matrix operations over max —plus algebra can be considered as follows:
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A+ B = (max(a;j, bij))mxn, AC = (max}y_; (@i, + ckj))mxi, and AA = (A+aij) mxn- It
is easy to verify that M,,(S) := M,x,(5) forms a semiring with respect to the matrix
addition and the matrix multiplication whose additive and multiplicative identities
are the matrices 0 (the matrix of semiring zeros) and I, (the matrix with semiring
ones on the diagonal and zeros elsewhere), respectively.

Let A € Myxn(S), b € S™ be a regular vector and X be an unknown vector over
S. Then the i—th equation of the system AX = b is max(a;; +x1, a2+ Ta, . .., G+

DEFINITION 2.2. A vector b € S™ is called regular if b; # —oo for any ¢ € m.

DEFINITION 2.3. A solution X* of the linear system AX = b is called maximal,
it X <g X* for any solution X.

DEFINITION 2.4. Let the linear system of equations AX = b has solutions.
Suppose that A;,A;,,...,A; are linearly independent columns of A, and b is a
linear combination of them. Then the corresponding variables, x;,,z,,...,z;, , are
called leading variables and other variables are called free variables of the system
AX =b.

The degrees of freedom of the linear system AX = b, denoted by Dy, is the
number of free variables. Note that D; is well-defined as shown in subsection 3.1.

3. Main Results

In this section, we introduce a method, which we call the normalization method,
for solving a system of linear equations. Consider the system of linear equations
AX =b, where A = (a;j) € Myxn(S), b= (b;) is a regular m—vector over S and X
is an unknown n—vector. Let the j-th column of the matrix A be denoted by A,;.

DEFINITION 3.1. (Normalization Method) Let A € M,,,,(S) and A; € S™
be a regular vector for any j € n. Then the normalized matrix of A is denoted by

A:[Al—Al AQ_AQ‘ ‘An_An]?
where A; = Wty tms for every j € n.

Similarly, the normalized vector of the regular vector b € S™is b= b — b, where
b — bitbetetbm
m

As such, we can rewrite the system AX = b as the normalized system AY = b,
where Y = (A; —b) + X = (A, — b+ 7)), as follows.

AX =b = max(A1 + 1, A2+ x2,..., An +xn) =D
= max((A1 — A1) + Ay + 21, (A2 — Ao) + Ao+ 22, .., (An — Ap) + Ap +2,) = (b—b) + b
= max(A; + A1 +x1, As+ As + a0, ..., Ay + Ay +2,) =b+b

(A + (A1 —b+x1), A+ (Ag —b+22),..., Ap + (A —b+z,)) =b

émax(ﬁh+y1,Ag+y27...,An+yn):E
= AY =b.

= max

Hence y; < b — a;; for every i € m and j € n. Now, we define the associated
normalized matrix @ = (¢i;) € Mpxn(S) where ¢;; = b; — a;; . We choose y; as
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the minimum element of @; (the j-th column of @), which we call the “j-th column
minimum element”.
It should be noted that if a;; = —oo for some ¢ € m and j € n, then we will not
count a;; in the normalization process of column A;, i.e
A'_a1j+agj+ +(l(l 1)j +CL(1+1) +~--—|—amj
J -1 .
As such, a;; = —oo and we set ¢;; := (—oo)_ such that s < (—o0)~ for any s € S.
Thus, ¢;; does not affect the j—th column minimum element. Consequently and
without loss of generality, we assume that every column of the system matrix is
regular.

THEOREM 3.2. The linear system of equations AX = b has solutions if and only
if there exists at least one column minimum element in every row of Q.

PROOF. Let the system AX = b has solutions. Suppose the i-th row of @) has
no column minimum element for some ¢ € m. That is y; < b — a;; for every j € n,
therefore the i-th equation of the system AY =bis max (s + Y1, @iz + Yo, Gin +
Yn) < b;. Hence, the system AY = b and a fortiori the system AX = b have no
solution, which is a contradiction. Conversely, suppose that every row of the matrix
( contains at least one column minimum element, so for any ¢ € m there is some
J € nsuchthat y; = bi —a;;. Then max(azl—i—yl, Qioty2, -+, Qij+Y;, - QintYn) = b;
for every i € m. Thus, the system AY = b and consequently the system AX = b
have solutions. O

REMARK 3.3. The solution of the system AX = b that is obtained from Theo-
rem 3.2 is maximal.

3.1. A Descriptive Method for Finding the Number of Degrees of Free-
dom. Let the nonnegative integer k£ be the number of the rows of () containing
exactly one column minimum element in different columns.

e Step 1. First, we determine the rows of ) which contain exactly one
column minimum element. We now consider the columns of () where these
column minimum elements are located. The corresponding variables of these
columns are leading variables of the system AY = b. Hence, the system has
at least k leading variables. For example, suppose that a row of () contains
exactly one column minimum element that is located in the j-th column.
Then y; and consequently x; are leading variables of the systems AY = b
and AX = b, respectively.

e Step 2. Next, we remove every row of () containing exactly one column
minimum element and determine their column indices. We then eliminate
the rows of the matrix () whose column minimum elements occur in the
same column index as the rows containing exactly one column minimum
element.

e Step 3. In the remaining rows from Step 2, we select the column whose
column minimum elements appear most frequently (say, the I-th column).
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We consider the corresponding variable to this column as the next leading
variable (z;). We now remove all the rows including z;.

e Step 4. We now repeat Step 3 and continue until we remove all the
rows of (). FEventually, we can obtain the total number of leading vari-
ables and the degrees of freedom which satisfy the following equation Dy =
n — (the number of leading variables).

In the following two examples, we apply the above method to find the number
of degrees of freedom of solvable linear systems.

EXAMPLE 3.4. Let A € Myy5(S). Consider the following system AX = b:

4 7 12 -3 0 1 5

32 8 3 1| |10

91 6 0 2 = 4

2 8 -5 1 -3 4 9
Ty

By Definition 3.1, the normalized system AY = b corresponding to the system
AX =bis

_9 5 20 _13 1 Y _9
R Tt R Y2 3
BTN S B T S I I B RS
2 1 42
4 T w3 5 Ya 9
2 4 1 2 Us
where A; = -2, Ay = g, Ay = %, Ay = i, As = —%, b=7. The following matrix

Q= (61 — Q;j) € Myx5(S) is obtained:

[ 9] [ 35] | -
S 1 s B B
11 1 1 7
-2 5 i i 3
11 11
1 15
S N B )
3 49 5 9
_ T2 4 1 2

Since every row of the matrix ¢ contains at least one column minimum element,
by Theorem 3.2 the normalized system AY = b and consequently, the system AX =
b have solutions. Through ), we can now implement the described method for
finding the degrees of freedom of this system:

e Stepl. The second and fourth rows of matrix () contain exactly one column
minimum element, which are both located in the first column. This means
x1 is a leading variable of the system AX = b and therefore Dy <5—1 = 4.

e Step2. We must remove every row of (), which contains the column mini-
mum element in the first column. As a result, the second and fourth rows of
@ are removed. Now, we consider the following submatrix of () containing
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these remaining rows:

9 35
172l % i B
@ = . 5 11 11
S N o N )

e Step3. Since the column minimum elements in the matrix (), have the same
frequency, we have four options for the next leading variable. For example,
let’s consider x5 as a leading variable. Thus, we can remove the first row of
Q. As aresult, Dy <5—-2=3.

e Step4. We repeat the process for the second row of (), so the procedure is
complete. Consequently, the system under investigation has three leading
variables and the number of degrees of freedom is Dy = 2.

ExAMPLE 3.5. Consider the solvable linear system AX=b as follows:

165 57 72
141 64 48
137 101 46

-7 0
3 -1
0 2

—243 98 206 156 —5

2 102
o I I
. 76

160
X5

In order to find the degrees of freedom of the system AX = b, we must use Q:

—117
—117

Q=

21
—10

—84

43 -3

—84

9 —26

349

—115 |—49] |84

10 =31 |’

38

252

—62 60

the fourth row of () contains exactly one column minimum element which is located
in the fourth column. x4 is therefore a leading variable of the system AX = b and
the fourth row must be removed from ). In the remaining rows of @), the column
minimum element in the third column (—84) has the highest frequency, so we choose
x3 as the next leading variable of the system AX = b. We now remove every row
of () containing this column minimum element, so all the rows of ) are removed.
Hence, the system AX = b has two leading variables and Dy = 3.

1
2

3.

5.
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ABSTRACT. Let G be a finite d-generator p-group of class two such that G/G’ is elementary
abelian and G’ & Zp, @ Zp. The aim of this talk is to characterize the exact structure of some
functors including the Schur multiplier, the non-abelian tensor square, and the non-abelian
exterior square of G. We also give the corank of G.

Keywords: Schur multiplier, Non-abelian tensor square, Non-abelian exterior square,
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1. Introduction and Preliminaries

For a given group G, the center, the derived subgroup, and the Frattini subgroup
of G are denoted by Z(G), G', and ®(G), respectively. Let p be a prime number.
The subgroup (27 | x € G) of G is denoted by GP. Let exp(G) be used to denote the
exponent of G. All p-groups of class two are considered finite throughout the paper.
The concept of the non-abelian tensor square G ® G of a group G is a special
case of the non-abelian tensor product of two arbitrary groups that was introduced
by Brown and Loday in [4]. It is easy to check that K : G ® G — G’ given by
g®4qg — [g,q] for all g,¢" € G is an epimorphism. Let J5(G) be the kernel of &,
and let \7(G) be a subgroup of G ® G generated by the set {g® g | g € G}. Clearly,
V(G) is a central subgroup of G ® GG. The non-abelian exterior square G A G is the
%&C;. The element (¢ ® ¢') vV (G) in G A G is denoted by g A ¢’
for all g,¢" € G. The map k induces the epimorphism ' : G A G — G’ given by
gAg — [g,¢] for all g, ¢’ € G. The concept of the Schur multiplier M(G) of a group
G was introduced by Schur while he was studying on projective representation of
groups. The kernel of the map &’ is isomorphic to the Schur multiplier of G (for
more information, see [4]).

The corank ¢(G) for a group G of order p™ is defined a non-negative integer such
that

quotient group

(G) = gnln — 1) ~ log, (IM(G)]).

Many authors found the structure of the Schur multiplier, the non-abelian tensor
square, and the non-abelian exterior square for some classes of groups such as finite
abelian groups and extra-special p-groups (see [8, 9]).

Recall that a group G is called capable if G = E/Z(FE) for some group F. Beyl,
Felgner, and Schmid [2] introduced the epicenter Z*(G) of a group G. The epicenter
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of G is the smallest central subgroup K of G such that G/K is capable. In particular,
G is capable if and only if Z*(G) = 1. A finite p-group G is called special of rank k
if G’ = Z(G) = ®(G) and Z(G) is an elementary abelian p-group of rank k. Special
p-groups of rank one are extra-special p-groups. Capable extra-special p-groups were
classified by Beyl, Felgner, and Schmid in [2]. It is shown [7] that if G is a finite
capable p-group of class two such that ®(G) = G’ 2 Z, ® Z,, then p° < |G| < p".
Hatui [6] obtained the order of the Schur multiplier of special p-groups of rank two.
In the same motivation, the goal of this paper is to give a complete description of
the structure of some functors, such as the Schur multiplier, the non-abelian tensor
square, and the non-abelian exterior square for a d-generator p-group G of class two
such that ®(G) = G' = Z, & Z,.

We list some elementary observations that will be used in the next section.

Let Z{ denote the direct product of r-copies of the finite cyclic group of order n.

THEOREM 1.1. Let G be a d-generator p-group of class two with ®(G) = G' =
7%, Then
p .

i) M(G) is an elementary abelian p-group.
i) G® G is an abelian p-group.

i) Let p # 2. Then |G AG| = IM(GQ)||G], G © G = (GAG) & ZE "™ and

Jo(G) = M(G) @z "),
iv) If GP = G’ and G is non-capable, then Z*(G) =G, G G=G/G'@ G/G,

(3d(d+1

J(G) 2 M(G) @ 23" and GAG = M(G) @ G
v) If exp(G) = p, then exp(G ® G) = p.
vi) If GP = Z,, then G is non-capable and G NG = M(G) & G.
vil) If exp(G) = p* and G is capable, then exp(G @ G) = p*.

PROOF. i) [9, Corollary 3.2.4] implies that the sequence 1 — ker 3 —

G ® (G/G") LN M(G) S M(G/G") — G — 1 is exact. It follows that
M(G) 2 kere®lm e = %Gﬁ/m@hn e. Since G'®(G/G") and M(G/G")

are elementary abelian p-groups, we get M(G) is elementary abelian as well.
ii) The result follows [1, Proposition 3.1].
iii) Clearly, |GAG| = |M(G)||G’|. Using part (ii), we get G®G is abelian. Using
[3, Lemma 1.2(i), Theorem 1.3(ii), and Corollary 1.4], we have /(G) =

Zl(g%d(dﬂ)) and so GG = (GANG)DYV(G) = (GANG) @ Z,(,%d(dﬂ)) and

Jo(G) = M(G) & 27",

iv) If p = 2, then G*> = G'. By a similar way used in the proof of [6, Theorem
1.1(a)], we get Z*(G) = G’ for an arbitrary prime number p. [5, Propo-
sition 16] implies that G ® G = G/G' ® G/G', v(G) = v(G/G'), and
GANG = G/G' NG/G'. By parts (i) and (ii), we have M(G) and G A G
are elementary abelian p-groups. It follows that J5(G) = M(G) @ v(G) =
M@ @ ZE ) and GAG = M(G) @ @

v) The result follows from [1, Lemma 3.4].
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vi) The result holds by a similar way used in the proof of [6, Theorem 1.3(a)]
and part (iii).
vii) Assume that G = (2P) @ (y?) for z,y € G. Put S = (aP AN g,y ANg1 | 9,91 €
G). By [5, Proposition 16, we have (GAG)/S = G/G' ANG/G" and S # 1.
For some g € G, we get (z A g)P = (2P A g)(x A [z, g]) 22D £ 1gaq. We
conclude that exp(G A G) = p*.
U

THEOREM 1.2. Let G be a d-generator p-group of class two such that Z(G) =
ZI(Jm) and ®(G) = G = Zl(?). Then G = H x Zl()m_z), where H is a special p-group of
rank two. In particular, G is capable if and only if H is capable.

PROOF. Clearly, Z(G) = G’ x A, where A= Z n-2.If A=1, then G = H and
the proof is complete.

H AG
Let A # 1. Since G/G’ is elementary abelian, we have g = — X ?Cf, for a

/ !
subgroup H of G. Therefore, G = HA and G' = H N AG' = (gﬂ A)G'. Hence
HNACGNA=1landsoG = HxA.Since Z(H)xA=7Z(G)=G'xAand G' = H',
we have Z(H) = H' and so H is a special p-group of rank two. Now, let G be capable.
Then Z*(H) N H' =1, by [10, Proposition 3.2]. Since H/H' is elementary abelian,
H/H' is capable, by [2, Proposition 7.3]. Hence, Z*(H) C H' and so Z*(H) = 1.
The converse holds by [7, Remark (2) p. 247]. O

2. Main Results

This section is devoted to characterize the explicit structure of G A G, G ® GG, and
J2(@Q) for a d-generator p-group G of class two such that &(G) = G' = 7. We also
give the corank of G.

The corank, the Schur multiplier, the non-abelian exterior square, and the non-

abelian tensor square of a non-capable p-group G of class two when ®(G) = G' = Zg)
are given in Theorems 2.1 and 2.2.

THEOREM 2.1. Let G be a non-capable d-generator p-group of class two such
that G' = Zf), exp(G) = p, and p # 2. Then the following results hold:
) Z°(G) = Z, if and only if M(G) = ZZ"™ (@) =20+ 1, GAG =
Zl(g%d(d_l)w), GRG= Z;f)d2+2), and Jo(G) = Zz(fﬁ).
i) Z5(Q) = G if and only if M(G) = 22" @) =24 +3, GAG =
23" G G2z, and Jo(G) = 2.

PROOF. Using Theorem 1.1 (i), (ii) and (v), we obtain that M(G) and G A G
are elementary abelian p-groups. Hence, G A G = M(G) ® G'. By a similar way
used in the proof of [6, Theorem 1.4(a),(g), and (h)], we have

) Z*(G) = Z, if and only it M(G) = Z3" ™ if and only if #(G) = 2d + 1.

i) Z*(G) = G if and only if M(G) = 227 if and only if ¢(G) = 2d +
3.
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By Theorem 1.1(iii), we determine the structure of G ® G, G A G, and J5(G). O

THEOREM 2.2. Let G be a non-capable d-generator p-group of class two such
that ®(G) = &' =2 Z\Y) and exp(G) = p®. Then the following assertions hold:

i) Assume that Z*(G) GP = Z, for p # 2. Then M(G) = ;ld(dil)), tHG) =

2d+1, GAG2ZE Goa 2z, and Q) = ).
ii) Let G» = G’ or GP = Z, and Z*(G) = G for p > 2. Then M(G) =

ZE I (@) =2d+3, GAG=ZE Y GeG =7 and 1(G) =
Z(d2—2)
D .
PRrROOF. The result holds by Theorem 1.1 and a similar way used in the proof
of [6, Theorem 1.1(b) and Theorem 1.3(c) and (d)]. O

In what follows, we compute the corank, the Schur multiplier, the non-abelian
exterior square, and the non-abelian tensor square of a capable d-generator p-group
G of class two when &(G) = G' = 7P

THEOREM 2.3. Let G be a capable d-generator p-group of class two such that
G' = ZZ(,Q) and exp(G) = p. Then one of the followmg cases holds:

)G~ o,01% x 28 M(G) = 22"V @) = 2d+4, GAG =
73U G G o 7D  and Jo(G) = 2",
i) G2 H x Z](de4) M(G) = Z( d(d— 1)+2)7 HG) = 2d+3, GAG = Z](D%d(d—l)+4)’
GeG= ZI()d2 , and Jo(G) = Z,(fl ) where H = D15(1%), H = &3(19), or
H =~ &,5(19).
i) G =T x 257, M) 227"V @) =2d+2, Gra =z Y,
G®G =2 and Jo(G) 2 ZE Y.

PROOF. Theorem 1.2 implies that G = H x Zz(,m_Q), where H is a capable special
p-group of rank two and exponent p. Using [6, Theorem 1.4(c)], let H = ®4(1°).

Then G = §4(1°) x Z\ By [6, Theorem 1.4(c)] and [9, Theorem 2.2.10 and
Corollary 2.2.12], we get

d(d—1)+3)

M(G) = M(H) & M(ZE¥) & (H/H' @ 709 = 73"

Hence, t(G) = 2d + 4. Similarly, we can obtain the Schur multiplier of G when H
is isomorphic to one of the p-groups ®15(1%), ®13(1°%), ®15(1%), or T. Using Theorem
1.1(iii), we may obtain the structure of G ® G, G A G, and Jo(G). O

THEOREM 2.4. Let G be a capable d-generator p-group of class two with GP =
G =27 and exp(G) = p2. Then

La(d—1)—
i) M(G) =z "V and (@) = 2d.
ii) If p # 2, then cither G AG = 283 0 2" V™ G0 ¢ = 22 0 2/,

Cmdjz(G)gZ;(adz or GNG = ZLy EBZ d(d—1)-1) G®G§Zp2@zj(gd2_l),
and Jo(G) = Zgﬂ—l).
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La(d—1)—
iii) If p = 2, then either GAG = Zf)@ZéQd(d b 3)7 (G®G)/N = ZiQ)@ngLg),

and Jo(G)/N = 28 or GAG = 2, 0 253 (G0 G)/N = Zh @
Zéd - and Jo(G)/N = Zéd Y where N = ker (v (G) = v(G/G)).

PROOF. Theorem 1.2 implies that G = H x Zém_z), where H is a capable special

p-group of rank two and exponent p?. Using Theorem 1.1(i), [6, Theorems 1.1(c)

and 1.5], [9, Theorem 2.2.10, and Corollary 2.2.12], we get M(G) = Zz(fd(dfl)fl) and

t(G) = 2d. From Theorem 1.1(vii), we get exp(G AG) = p?. Since (GAG)/M(G) =
G', we have (G A Gy € M(G). Tt follows that G A G = Z7) @ VA

La(d—1)—
GNG =Ly @Z,(fd(d R Using Theorem 1.1(iii) and [3, Theorem 1.3(ii)], we may
obtain the structure of G ® G and J,(G). O
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ABSTRACT. Let ¢ be a nonstandard involution on the set of all quaternions and « be a quaternion
such that ¢(a) = a. In this paper, the notion of k—numerical range of quaternion matrices with
respect to ¢ is introduced. Some basic algebraic properties are investigated.
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1. Introduction

Let the set of R and C be real and complex numbers, respectively. The four-
dimensional algebra over R with the standard basis {1,4, 7, k} is denoted by H. An
ordered triple (q1,q2,¢qs3) of quaternions, where ¢} = ¢5 = ¢ = —1, Qo = @3 =
—2q1, 243 = @1 = — @342, @3q1 = G2 = —q1q3 and 1g = q1 = ¢ for all ¢ € {q1, ¢z, 43}
is said a units triple. So, the triple (4, 7, k) is a units triple of quaternions and it is
called the standard triple. If ¢ € H, then there are unique ag, a1, as,a3 € R such
that ¢ = ap + a1q1 + a2qa + asqs. Let g = p1,t + p2,ij + p3ik € H, where 1 = 1,2, 3.
The ordered triple (g1, g2, ¢3) is a units triple if and only if the matrix P = (p;;) is
orthogonal and det(P) = 1 [3, Proposition 2.4.2].

A map ¢ : H — H is called an involution if ¢(z + y) = ¢(x) + ¢(y), o(xy) =
o(y)o(z) and ¢(¢(z)) = x for all z,y € H. One can easily see that ¢ is one-to-one
and onto. Also, the 4 x 4 matrix responding of ¢, with respect to the standard basis
of H | is diag(1,T), where T'= —1I or T is a 3 x 3 real orthogonal symmetric matrix
with eigenvalues 1,1, —1. ¢ is called the standard involution for 7' = —I and for
other case, ¢ is called a nonstandard involution [3, Definition 2.4.5]. The set of all
quaternions that are invariant by ¢ is defined and denoted by

Inv(¢) ={qg € H: ¢(q) = q}-

Let H" be the collection of all n—column vectors and M,,«,(H) be the set of
all m x n matrices with entries in H. For the case m = n, M,,«,(H) is denoted
by M, (H). Let A € M,,«,(H), the n x m matrix A, is obtained by applying ¢
entrywise to AT. Let A € M, (H) and « € Inv(¢), the numerical range of A with
respect to ¢ is defined and denoted by

qua)(A) ={zsAz: v e H", x4z = a}.

To access more information about some known result see [1, 3].
In this paper, we are going to introduce and study the k—numerical range of
quaternion matrices with respect to nonstandard involutions.
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2. Main Results

In this section, we assume that k and n are positive integers such that k < n. Also,
let I}, denotes the k x k identity matrix. The relation ~4 on H is defined by

Aoy <=3 € H\ {0} s.t. X = Byup,

where A, i € H. It is clear that ~y is an equivalent relation on the quaternions. For
every \ € H, the ¢—class of X is defined by

Mo = {808 B € H, B £ 0},

DEFINITION 2.1. Let A € M, (H) and ¢ : H — H be an involution. Also, let
a € Inv(¢) and 1 < k < n. The k—numerical range of A with respect to ¢ is defined
and denoted by

1
WieR(A) = {1 tr(XsAX) 2 X € My (H), XoX = ali}.

REMARK 2.2. Let A € M,(H) and ¢ : H — H be an involution. Moreover, let
a € Inv(¢), 1 <k <n. For every X = [z1,..., 2] with X, X = alj, we have for

all 2,5 =1,... )k
Vo)« 1=7
(xi)px; { 0 it
Then by Definition 2.1, we have
k
Wéa’k)(A) = {% Z(l‘i)d)Ami o {x1,...,zk} is a set in H" such that (z;)g¢z; = ads; Vi, 5 =1,...,k}.
=1
Recall that
5 — 1 1=
PTV0 i)
It is clear that if £ = 1, then we have
Wéa’l)(A) ={z4Axr: v € H", xyx = a} = Wéa)(A).

So, the notion of k—numerical range of A with respect to ¢ is a generalization of
the numerical range of A with respect to ¢. Also, if in Definition 2.1, the units
triple (¢i1, g2, q3) is the standard triple, i.e. (q1,q2,q3) = (4,7,k), « =1 and ¢ is the
standard involution, then we have

k

1

qul’k)(A) = W¥HA) = {E Z x;Ax; : {xy1,..., 2} is an othonormal set in H"}.
i=1

To access more details, see [2].

DEFINITION 2.3. Let ¢ : H — H is an involution. Also let U € M, (H). U is
called ¢p—unitary it U,U = UU, = I,, and the set of all n X n ¢—unitary matrices is
denoted by U,,.

In this paper, we assume that ¢ is a nonstandard involution on H such that

o(1) =1, ¢(q1) = —q1, ¢(q2) = q2,0(q3) = g3. In this case, we have Inv(¢p) =
Spa”R{l»%aq{i}
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EXAMPLE 2.4. Let A = { @ 0 . Then WQEOQ)(A) = {0}.

0 —q

In the following theorem, we state some basic properties of the k—numerical
range of quaternion matrices with respect to ¢.

THEOREM 2.5. Let A € M,(H). Then the following assertions are true:
(a) qua’k)(rA +sl) = Tqua’k)(A) + sa and Wéa’k)(A + B) C W(z()a’k)(A) +
Wf’k)(B), where r,s € R and B € M, (H);
(b) WS (U,AU) = WP (A), where U € Uy,;
(c) W, a D (4) C conv(Wan’k) (A)), where k < n;
(d) [f)\ ; WM (A), then [Ny € W™ (A);
(e) W, <A¢) = (W™ (4)),.
Let S g H. Then S is called a radial set in H if A € S implies that t\ € S for
all ¢ > 0. In the following proposition, we show that Wéo’k)(A) is a radial set in H.

PROPOSITION 2.6. Let A € M,(H) and 1 < k <n. Then quo’k)(A) is a radial
set in H.

PROOF. Let A\ € quo’k)(A) and t > 0 be given. Therefore, there is a X €
M, x,(H) such that XyX = 0., and A = 1tr(X,AX). Since t > 0, we have
A = 1tr(VtX,AVtX). Then by putting Y = v/tX, we have Y;Y = 0.I; and
tA = 1tr(Y3AY). Hence, tA € W;)O’k)(A). This completes the proof. O

A matrix A € M, (H) is called ¢—Hermitian if A = A, and ¢p—skewHermitian if
A = —Ay4. Now, we state the following theorem.

THEOREM 2.7. Let A € M,(H). Then the following assertions are true:
(a) If A is a ¢— Hermitian matriz, then qua’k) (A) C Spang{l, ¢, q3};
(b) If A is a ¢p—skewHermitian matriz, then qua’k) (A) C Spang{q}.

PROOF. Let u € Wéa’k)(A) be given. Then there is a X € M, «x(H) such that
p= ttr(XsAX) and X4 X = aly. So, we have

1 1
[L¢ = Et?“(X¢A¢X) = Et?“(X¢AX)

Therefore, s = p. Hence, p € Spang{l,qs,q3}. The proof of (b) is similar to
(a). O
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1. Introduction

In this article, we denote by C'(X) (resp., C*(X)) the ring of all (resp., bounded) real-
valued continuous functions on a Tychonoff space X. and whenever C'(X) = C*(X),
we say that X is pseudocompact. For each f € C(X) the zero-set Z(f) is the set of
zeros of f and its complement coz f, is called the cozero-set of f.

Anideal I in C(X) is called a z-ideal (resp., 2°-ideal) if whenever f € I, g € C'(X)
and Z(f) C Z(g) (resp., intxZ(f) C intxZ(g)}), then g € I. The intersection of
all maximal ideals containing f € C(X) is My = {g € C(X) : Z(f) C Z(g)}. M;
is the smallest z-ideal containing f. Similarly, the intersection of all minimal prime
ideals of C'(X') containing f is denoted by Py. It is known that for every f € C'(X),
P ={g € C(X) : intxZ(f) C intxZ(g)}. Py is, in fact, the smallest z°-ideal
containing f; see [2] for more details on z°-ideals.

Every maximal ideal of C'(X) is precisely of the form M? = {f € C(X) :
p € clgx Z(f)}, for some p € X, where fX is the Stone-Cech compactification of
X. Every maximal ideal M? in C'(X) contains the ideal O? = {f € C(X) : p €
intgxclgx Z(f)}, the intersection of minimal prime ideal of C'(X) contained in M?;
see Theorems 2.11 and 7.13 in [5]. For each ideal I in C'(X), we denote by 6(I)
the set of all p € X such that the maximal ideal M? contains I. Using 70 in [5],
01) = Nyer clax Z().

Whenever R is a ring and M is an R-module, then a nonzero element a € R is
called M -regular if am # 0 for all 0 # m € M. A sequence ay,...,a, of elements of
R is said to be an M-regular sequence of length n if the following statements hold.

(1) ay is M-regular, ay is M/a; M-regular, ag is M/(a; M + asM )-regular, etc.

(2) M #3 aiM.

The maximum length of all M-regular sequences, if exists, is called the depth of M
and it is denoted by depth(M). The depth of a ring R is defined similarly when
we consider it as an R-module. The concept of regular sequences of a ring was first
introduced in [8]. The study of regular sequences and as well as depth is usually
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restricted to finitely generated modules over Noetherian local rings. We refer the
interested readers to Auslander’s works [4] and some papers of Wiegand, for example
[7] and [9]. Nevertheless, these concepts are defined and studied in general rings,
modules, and recently in rings of continuous functions; see [1] and [3]. In [1] as a
main result it has been shown that depth(C' (X)) < 1. In aforementioned paper the
authors after computing the depth of some important ideals such as maximal ideals,
essential ideals, free ideals and some other ideals gave a conjecture that the depth of
every ideal of C'(X) is also less than or equal to 1. In [3] it has been given a positive
answer to this conjecture. In section 3 of the same paper the authors presented
a complicated proof to show that the depth of the factor rings of C'(X) modulo a
principal ideal does not exceed 1; although they tried to prove this fact in general for
an arbitrary ideal of C'(X), but their efforts were in vain. In the present paper we
continue the route in the later papers and compute the depth of some factor rings
C(X)/I for some particular z-ideals of C'(X). First, we need the following lemmas.

Using the following lemma, for every ideal I in C'(X) and each r,s € C'(X), we

have
(r + I)@ + (s +I)C(}X) + C([X>,

if and only if Z(r)NZ(s)NZ(f) # 0, for every f € I. In the sequel, for every ideal

I C C(X) and each r € C(X) we denote r+ I € % by 7, for the simplicity.

LEMMA 1.1. [3, Lemma 3.1] Let r,s € C(X), I be an ideal of C(X) and R =

CX) " Then the following statements are equivalent.

' a) TR+ SR = R.
b) 6([) N Clgx(Z(T) N Z(S)) = @
c) There exists f € I such that Z(r) N Z(s)NZ(f) = 0.

The proof of the following lemma is straightforward.

LEMMA 1.2. Let I be an ideal in C(X) and R = @ Then for each s € C(X),
5€ Risan %-r@gular element if and only if for every k € C(X), sk € (r,I) implies
that k € (r,I).

2. Depth of Factor Rings of C'(X) Modulo z-Ideals

In this section we prove that the depth of factor rings of C'(X) modulo some
z-ideals such as the smallest z-ideal and smallest z°-ideal containing an element
f € C(X), real z-ideals and ideals of the form OP, for some p € X, do not exceed
1. First we need the following lemma.

LEMMA 2.1. Let I be an ideal of C(X) and R = @ Suppose r,s € C(X) and
define

r3 (2)+s5 (x)

o) = 0 zeZr)nZ(s)

{ -1 ¢ Z(r)n Z(s),

Then the following hold.
a) If s is 2 -reqular, then there exist h € C(X) and k € I such that ro = rh+k.
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b) If 7,5 is a regular sequence in R, then there exist h € C(X) and k € I such
that so = sh + k.

PROOF. Let 7* := ro and s* := so. Since [r*| < |r3| and |s*| < |s3], we have
r* s € C(X). To prove (a), suppose 5 is %— regular. Thus, sr* = rs* € (r,I)

implies r* € (r,I) using Lemma 1.2. Hence, there exist h € C'(X) and k € I such
that ro =r* =rh + k.

(b) Let 7,5 be a regular sequence in R. Then, by [6, Theorem 117], 7 is %—
regular. Now, since rs* = sr* € (s, ) using Lemma 1.2 we conclude that s* € (s, I).
Thus, there are h € C'(X) and k € I such that so = s* = sh + k. O

THEOREM 2.2. Let f € C(X). Then depth(%) <1

CX)

PROOF. Suppose, on the contrary, that depth(%) > 2and 7,5 € P is a
regular sequence. Thus, 7 is R-regular, 5 is %— regular and 7R 4+ SR # R, where

R = %ﬁf) Since 7 is R-regular, [1, Lemma 4.8] implies that intzn(Z(f)NZ(r)) =0,

which means Z(f) \ Z(r) is dense in Z(f). Using Lemma 2.1(a) and Z&-regularity
of §, there exist h € C(X) and k € My such that ro = rh + k. On the other hand,
since TR+ SR # R, we have Z(r) N Z(s) N Z(f) # 0 by Lemma 1.1(c)=(a).

Now, let y € Z(r)NZ(s)NZ(f). Thus, there is a net (y,) contained in coz rNZ(f)
which approaches to y since Z(f)\ Z(r) = Z(f) Ncozr is dense in Z(f). Therefore,

r(y»)
ri(ya) + 55 ()
But, k € My implies that Z(f) C Z(k) and hence

=ro(yx) = r(ya)h(yr) + k(yy).

1
h(ys) = :
r5(ya) + 55 ()
Thus h(yy) — oo, which contradicts the continuity of h at y. O

Since Z(f) is regular closed if and only if Py = My, the following corollary is
evident using the previous theorem.

COROLLARY 2.3. Let f € C(X) and suppose that Z(f) is reqular closed, then
depth(%f)) <1

In Theorem 2.5 below we improve the method used in the proof of Theorem 2.2,
to show that the depth of every factor ring of C'(X) module a real z-deal I is at
most 1. First, we need the following lemma which gives a necessary condition for
the regularity of 7 € C'(X)/I. Notice that we call an ideal I C C(X) a real ideal if
every maximal ideal of C'(X) containing [ is real, i.e., (/) C v.X, where vX is the
Hewitt realcompactification of X.

LEMMA 2.4. Let I be a z-ideal of C(X) and r + I be a regular element of @
Then for every k € I, (1) C clgx(Z(k) Ncozr).
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PROOF. Let k € I and suppose on the contrary that there exists p € 6(1) \
clgx(Z (k) Ncozr). Then there is f € C*(X) such that Z(k) Ncozr C Z(f) and
f?(p) = 1. Since Z(k) C Z(rf) and I is a z-ideal, rf € I, which implies that f € I
by the regularity of 7+ 1. Hence, p € (1) C clax Z(f) C Z(f”), a contradiction. [

THEOREM 2.5. For every real z-ideal I of C'(X), depth(@) <1

@ is a regular sequence. Then
7 is R-regular, 5 is %—regular and 7R + 5R # R, where R = @ Since 7 is R-
regular, Lemma 2.4 implies that 0(1) C clzx(Z(k) Ncozr). Using Lemma 2.1(a)
and ZL-regularity of 5, there exist h € C(X) and k € I such that ro = rh + k. On
the other hand, since 7R + SR # R, there exists p € (1) Nclgx(Z(r) N Z(s)) # 0
by Lemma 1.1(a)=(b). Thus, p € clzgx(Z(k) N cozr). Hence there exists a net
(yn) € Z(k)Ncozr approaching to p. Then ro(yy) = r(yx)h(yx)+E(yx) = r(ya)h(ys)

and since (y,) C cozr, we have

PROOF. Suppose on the contrary that 7,5 €

1
h(y)\) = - )
ri(ys) + 55 (1)
which means h*(p) = oo, but p € (1) C vX, a contradiction. O

Since a space X is pseudocompact if and only if vX = X every ideal of C'(X)
is real whenever X is pseudocompact. Thus, the following result is now evident.

COROLLARY 2.6. Let X be a pseudocompact and I be a z-ideal of C(X). Then
depth(@) <1.

LEMMA 2.7. Let I be an ideal of C(X). If 7,5 € % is a reqular sequence.
Then for every k € I, Z(k)N Z(s)NOZ(r) # 0.

PrROOF. Let R = @ and suppose, on the contrary, that there exists k € [
such that Z(k) N Z(s) NdZ(r) = 0. Since TR + SR # R, for every k € I we have
Z(kYNZ(s)NZ(r) # 0 by Lemma 1.1. But, 0Z(r) = Z(r) \ intxZ(r), hence

04 Z(k)NZ(s)NZ(r) Cintx Z(r).
Using [5, 1D.1], there exists g € C(X) such that r = g(r? + s* + k?). Thus,
r(1—rg) =s%g+ kg € (s,I). But, 7 is ZL-regular [6, Theorem 117]. Now, Lemma

1.2 implies that 1 —rg € (s,/) which means 1 € (r,s,I). So (r,s,I) = C(X), i.e.,
TR+ sR = R, a contradiction. 0

PROPOSITION 2.8. For every closed subset A € X, depth(c(gf)) <1.

PROOF. Suppose, on the contrary, that 7, s € CO(f) is a regular sequence. Using

Lemma 2.7, for every g € O* we have 0Z(r)N Z(s) N Z(g) # 0. On the other hand,
for every f € O4 there exists g € O such that Z(g) C intxZ(f) by [5, 7.12 (a)] and
complete regularity of 8X. Thus, 0Z(r) N Z(s) Nintx Z(f) # 0, for every f € O4,
which implies that § is not Z--regular by [3, Lemma 3.2], a contradiction. O
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These facts lead us to have a guess that the depth of every factor ring of C'(X)
modulo every z-ideal is either 0 or 1. We could not settle our guess and we cite it
as a question.

QUESTION 2.9. Is the depth of the factor ring of C'(X) modulo a z-ideal less
than or equal to 17 what about the factor ring of C'(X) modulo an arbitrary ideal?
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ABSTRACT. Let m and n be positive integer numbers. In this note we study all finite groups
that for every finite subsets M and N containing m and n elements, respectively, there exist
z € M and y € N such that (z,y) is r-Kappe (call this condition K,(m,n)). In fact we fined
some bounds for m and n such that G € K,(m,n) implies that G is Kappe and we find a bound
for order of G when G is not Kappe group in K,(m,n) and r = 2,3. Also we study all finite
groups such that every two subsets M and N of G, containing m and n elements, there exist
xz € M and y € N, such that (z) is subnormal in (z,y), (call this condition &(m,n)), and we
will fine some bounds for m and n such that all finite groups in this class are nilpotent. Also we
find a bound for order of G when G is a non-nilpotent finite &(m, n)-group.
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1. Introduction

In [6], M. Zarrin defined the class X'(m,n) as follow: Let X be a class. Then a finite
group G is in the class X'(m,n) for some positive integer numbers m and n, if for
all subsets M and N of G such that |[M| = m and |N| = n there exist x € M and
y € N that (z,y) € X. This definition is motivated by B. H. Neumann [4] when
X = 4l is the class of abelian groups (he called this condition Comm(m,n)).

By a result of Neumann [5], Abdollahi et al. [1] have shown that if G is an
infinite group satisfying in the condition Comm(m,n), for some m and n, then G is
abelian. They also proved that if G is a nonabelian group in Comm(m,n), then |G|
is bounded by a function of m and n. Bryce in [2], defined the class 9" with respect
to the class 2) and positive integer n as fallow. A group G is in Y, if, whenever
X and Y are subsets of cardinality n in G there exist x € X and y € Y for which
(x,y) €. In [2], Bryce introduce a class of groups that he called star groups which
containing the class of abelian groups, nilpotent groups and supersoluble groups and
find a bound for order of groups in 9" where Q) is a class of star groups. Zarrin
[6], studied the class 9t(m, n) when N is the class of all weakly nilpotent groups and
find a bound for order of finite non—nilpotent groups in 9(m, n). Although Bryce
[2] fined a bound for the cardinality of non—nilpotent finite groups in )(n,n), the
bound given in [6] is more accurate than the Bryce’s bound. In fact he has shown
that, among other things, if G is a non—soluble finite 9%(m, n)-group, then

2max{m,n}? [loglgz)ax{m,n}] ' :

|G| < max{m,n} x ¢

where ¢ < max{m,n} is a constant. Now let G be a finite group and let m and n be
two positive integer numbers. Then we say G is a Sn(m,n)-group if for all subsets M
and N of G such that |M| = m and |N| = n there exist x € M and y € N such that
(x) is subnormal in (x,y). It is clear that if m = 1 and n = 1 then for all z,y € G,
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(x) is subnormal in (x,y) and therefore [y, ] = 1 for some positive integer k. Thus
G is an Engel group and G is nilpotent by a result of Zorn [7]. It is not difficult to
see that S5 ¢ Sn(4,1) \ Sn(1,4) and therefore Sn(4,1) # Sn(1,4). Thus we define
S(m,n) = Sn(m,n)()Sn(n,m) for symmetry. Then it is clear that &(m,n) =
S(n,m) for all positive integer numbers m and n. We recall that a group G is said
to be an n-Kappe group if [2",y,y] = 1, for all z,y € G. In fact G is n-Kappe if
% is a group of exponent n where Ry(G) = {x € G| [z,y,y] =1, for all y € G}
is the set of all right 2-Engel elements of G. Primoz Moravec [3] study n-Kappe
groups and characterize 2 - Kappe, 3-Kappe and metabelian p-Kappe groups. In
fact he has shown that if p is a prime number, then G is a metabelian p-Kappe
group if and only if G is nilpotent of class< p + 1. Also it is shown that G is a
2-Kappe or 3-Kappe if and only if G is a 2-Engel or 3-Engel group, respectively. In
this talk we study finite groups in IC.(m, n) and find some bounds for m and n such
that every group in KC.(m, n) is r-Kappe. Also we will use the result of [3] and find
some bound for order of non-Kappe finite KC,.(m,n)-groups where r = 2,3. Also
we study finite groups G € &(m,n) and find some bounds for m and n such that
every &(m,n)-group is nilpotent. Also we find a bound for order of G when G is a
non—nilpotent finite &(m, n)-group.

2. Main Results

In this section we study finite groups in K.(m,n) and &(m,n) for positive integer
numbers m and n. We will use the following theorem and find some bounds for m
and n such that G € K.(m,n) implies that G is r-Kappe.

THEOREM 2.1. Let G be a KC,.(m,n)-group and let N be a normal subgroup of G
such that & is not a r-Kappe geoup. Then |N| < max{m,n}.

THEOREM 2.2. Let G be a finite group in class K.(m,n) and let q be the least
prime number dividing |G|. Also let N be a normal subgroup of G such that (q —
1)|N| > max{m,n} then & is a r-Kappe group.

COROLLARY 2.3. Let G be a finite group in IC,(m,n), r € {2,3} and let (¢ —
1)|2*(G)| < max{m,n}. Then G is nilpotent.

REMARK 2.4. Let G € K,.(m,n). Then if m < m’ and n < n’ Then G €
k. (m’,n’). In special k.(m,n) C k, (m/,n’).

THEOREM 2.5. Let G be a finite group in IC,(m,n) such that r € {2,3}. Also
let a € G be an element that ¢ (|a|) > max{m,n}. Then G is nilpotent.

THEOREM 2.6. Let G € K,.(m,n) such that m +n < 5. Then G is a r-Kappe
group.

PRrOOF. By Remark 2.4 it is enough to consider only the cases G € K,(1,4) and
G € K.(2,3). If G € k.(1,4) and = and y are two arbitrary elements of G, then
put: N ={y,zy,yx,y*} and M = {z}. If y = xy or yz then z = 1. If y = 2¥ then
y=x and (z,y) = (z) is cyclic. If zy = 2¥ = y~'zy then y = 1 and if yz = ¥ then
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y = 2vx~t = ylayz~! = [y,z7!] and therefore [x7! y,y] = 1. Thus suppose that
N have four distinct elements. then

(@,y) = (2, 2y) = (z,yz) = (z,27 yz),
and G € K,(1,4) implies that (z,y) is a r-Kappe group. Now if G € K.(2,3) and
o(x) # 2 then N = {y,zy,yz} and M = {z,x~'}. I this case (z,y) is a r-Kappe
group and if o(x) = o(y) = 2 then we put N = {y, yz,zy} and M = {x,2¥}. In this
case (r,y) = (z,zy) = (z,yx) or (z¥,y) = (z,y) or (z¥,yz) = (z¥,xy) = (z,y) is a
r-Kappe and since 2¥ = y~lzy = yry, G is a m-Kappe group. O]

COROLLARY 2.7. Let G € K,(m,n), where m +n <5 and r € {2,3}. Then G
1s nilpotent.

THEOREM 2.8. Let G € K.(m,n) be a finite group that is not r-Kappe, where
r € {2,3}. Then |G| is bounded by a function of m and n.

In the following we find some similar results above for finite groups in the class
S(m,n).
THEOREM 2.9. Let G be a non—nilpotent finite group in &(m,n) and let N be a
normal subgroup of G. Also let q be the least prime number dividing |G|. Then
1) if m < q(q—1)|N| and n < (q — 1)|N|, then £ is nilpotent.
2) if m < 2(q — 1)|N| and n < 2|NJ|, then & is nilpotent.
COROLLARY 2.10. Let G be a finite &(m,n)-group. Then
1) if 1 <m,n <2, then G is nilpotent, and
2) if 1 <m,n <4 and Z(G) # 1, then G is nilpotent.
We will extend this corollary for finite &(m, n)-groups when m +n < 5.

COROLLARY 2.11. Let G be a finite &(m,n)-group and let Z*(G) be the hyper-
center of G. Also let q be the least prime number dividing |G|, then
1) if max{m,n} < (¢ — 1)|Z*(G)|, then G is nilpotent, and
2) if m < 2(q— 1| Z*(G)|, n <2|Z*(G)|, then G is nilpotent.

PROOF. It is clear that if GG is not nilpotent, then % is not nilpotent. Now

the assertions are clear by applying Theorem 2.9. U
The first main result is the following theorem.

THEOREM 2.12. Let G be a finite S(m,n)-group and let q be the least prime
number dividing |G|. If a € G is a non—trivial element and v = ¢(|a|), where ¢ is
Fuller p-function, then

Difm<(u+1)(g—1),n<wuor
then G is nilpotent.

COROLLARY 2.13. Let G be a finite group in &(m,n). Then G is nilpotent if
m—+n < 5.
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PROOF. It is clear that the smallest distinct prime numbers that may divide |G|
is ¢ = 2 and p = 3. By Cauchy’s theorem G must have an element of order 3. Now
since u = p3) =2ifm < (g—1)(u+1) =3 and n < u(q— 1) = 2, then G is
nilpotent by Theorem 2.12 (1). Alsoif m < qu=4and n < ¢—1=1, then G is
nilpotent by Theorem 2.12 (2). O

The second main result of this talk says,

THEOREM 2.14. Let G be a non-nilpotent finite group in S(m,n). Then
1 maxym,n
|G| < 5 max{m,n} x max{czmax{m’”}Q[logﬁo | (m 4 ) 13VImERE2)

where ¢ is a constant.
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ABSTRACT. Let S be a nonabelian simple group that is not isomorphic to L2(q), where ¢ is a
Mersenne prime and let p be the greatest prime divisor of |S|. In [6, Conjecture E] A. Moreto
conjectured that if a finite group G is generated by elements of order p and G has the same
number of elements of order p as S, then G/Z(G) = S. In this paper, we verify the conjecture
for the sporadic simple groups.
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1. Introduction

Let G be a finite group. We denote by n,(G) the number of Sylow p-subgroup of G,
that is, n,(G) = [Syl,(G)|. Denoted by m;(G) the number of elements of order 4 of
G. Given a positive integer n and a prime r, we write n, to denote the full r-part
of n, so we can factor n = n,m, where m is not divisible by r. Now fix a prime p.
We say that a positive integer n is a normal Sylow number for p if for every prime
q, the full g-part n, of n satisfies n, = 1 (mod p). Note that if n is a normal Sylow
number for p, then n = 1 (mod p), and thus n is not divisible by p. Note also that
the set of normal Sylow numbers for p is closed under multiplication. The spectrum
of a group G is the set w(G) of its element orders. The spectrum of a finite group G
together with its order retains a substantial part of information on the structure of
G but, as demonstrated by the example of the dihedral group Dg of order 8 and the
quaternion group (Jg, does not necessarily determine G uniquely. There is a long
bibliography on element orders of finite groups, with special emphasis on element
orders of simple groups. However, most of the literature has been devoted to proving
that certain simple groups are determined by the set of element orders (see [7] or [5]
and their references) or to proving that certain simple groups S are determined by
the set of multiplicities of element orders and order of S (see [1] and its references).
The hypothesis on the order of the group is very strong, so A. Moreto in posed the
following conjecture that is more interesting (see [6, Conjecture EJ).

Conjecture 1.1. Let S be a non-abelian simple group that is not isomorphic to
Lo(q), where q is a Mersenne prime and let p be the greatest prime divisor of |S|.
If a finite group G is generated by elements of order p and G has the same number

of elements of order p as S, then G/Z(G) = S.

A. Moreto [6] is proved that the above conjecture is true for the alternating
group of degree p, where p be a prime that is not a Wilson prime or a near Wilson
prime of order 2 and Ly(p), where p be a prime that is not a Mersenne prime. W. J.
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Shi [8], provided some counterexamples for the above conjecture. He showed that
As, L3(4), O7(3), and Sg(3) are counterexamples. In this paper as the main result
we give positive answer to the above conjecture for the sporadic simple groups. Our
main theorem is the following.

THEOREM 1.2. Let p be the greatest prime divisor of the order of the finite group
G. Assume that G is generated by elements of order p and G has exactly m,(S)
elements of order p, where S is the sporadic simple group. Then G/Z(G) = S.

We have proved the main theorem of this paper in [2].

2. Preliminary Results

In this section, we present some preliminary results which will turn out to be useful
in what follows.

LEMMA 2.1. [3] Let G be a finite group without cyclic Sylow p-subgroups. Then
the number of elements of order p of G is congruent to —1 modulo p?.

The following lemma is elementary (see [6, Lemma 2.3]).

LEMMA 2.2. Let G be a finite group with cyclic Sylow p-subgroups of order p™,

with n > 1. Then the number of subgroups of order p of G is congruent to 1 modulo

p".

LEMMA 2.3. Let G be a finite group such that |G| = p* - n, where (p*,n) = 1.
Let P be a p-subgroup that acts on a p -subgroup N, and let C = Cy(P). Then
|N : C| is a normal Sylow number for p.

For example, if p = 11, we cannot have |N : C| = 12 because 12 is not a normal
Sylow number for 11.

LEMMA 2.4. Let G be a p-solvable group. Then n,(G) is a strong Sylow number
for p.

3. Proof of Theorem 1.2

Now we are ready to prove the main theorem of this paper.

Proof of main theorem. First, we will show that |P| = p, where P € Syl (G). By [4,
Table 1 and 2], we can compute n,(.S) for every sporadic simple group S. Since p is
the greatest prime divisor of |S|, we have p? 1 |S], so m,(S) = (p—1) x n,(S). Now,
we can easily compute m,(S). Also, it is easy to check that m,(G) = m,(S) # —1
(mod p?). By Lemma 2.1, G has a cyclic Sylow p-subgroup P. The number of
subgroups of order p of G is n,(S). It is easy to check that n,(S) £ —1 (mod p?).
By using Lemma 2.2, we deduce that |P| = p, as desired.

Now, we will show that G is not a p-solvable group. By way of contradiction,
let G be p-solvable. Then by Lemma 2.4, n,(G) = ny(S) = ¢ ¢5* - - ¢%is a normal
Sylow number for p. For every simple sporadic group S, it is easy to check that
there exists some i (1 <i < s) such that ¢ # 1 (mod p), which is a contradiction.
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We can prove that G has a normal series N < K < G such that K/N is a simple
group. Since p divides |K/N|, |G|, = p, G is not p-solvable and G is generated by
elements of order p, we deduce that K = G (note that K < G and n,(K) = n,(G),
so my,(G) = my(K)) and G/N is simple non-abelian with Sylow p-subgroups of order

.
For completing the proof we need to show that G/N = S, where S is one of the
sporadic simple groups, and also N = Z(G). O

References

1. A. Kh. Asboei, S. S. Salehi, A. Iranmanesh and A. Tehranian, A characterization of sporadic simple groups by
NSE and order, J. Algebra Appl. 12 (2) (2013) 1250158.

2. A. Kh. Asboei and S. S. Salehi, The influence of the number of elements of prime order on the structure of finite
groups, submitted.

3. P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. 40 (6) (1936) 468-501.

4. A. Khosravi and B. Khosaravi, Two new characterization of sporadic simple groups, Pure Math. Appl. 16 (2005)
287-293.

5. A. S. Mamontov and E. Yabara, Recognition of the group L3(4) by the set of element orders in the class of all
groups, Algebra Log. 54 (2015) 279-282.

6. A. Moreto, The number of elements of prime order, Monatsh. Math. 186 (1) (2018) 189-195.

7. W. Shi, Arithmetical properties of finite groups, Groups St. Andrews 2005. Vol. 2, 646-653, London Math. Soc.
Lecture Note Ser., 340, Cambridge Univ. Press, Cambridge, 2007.

8. W. Shi, A counterezample for the conjecture of finite simple groups, (2018). arXiv:1810.03786

E-mail: khaliliasbo@yahoo.com

117


mailto:khaliliasbo@yahoo.com




The 51** Annual Iranian Mathematics Conference University of Kashan, 15-20 February 2021

Semi-Symmetric Graphs of Certain Orders

Mohammad Reza Darafsheh*
School of mathematics, Statistics and Computer Science, College of Science, University of Tehran,

Tehran, Iran

ABSTRACT. A connected simple graph I' is called semi-symmetric if Aut(I") acts transitively on
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1. Introduction

We assume I' = (V) E) is a finite simple connected graph with vertex set V' and
edge set E. The full automorphism group of I" is denoted by A = Aut(I") and the
edge joining u,v € V is denoted by wv. An s-arc in I" is an ordered (s + 1)-tuple
(vo,v1, ..., vs) of vertices in V' such that v;_; is adjacent to v; for 1 < i < s and
v;_1 # vip1 for 1 <@ < s. The set of all s-arcs in I' is denoted by s-Arc.

For a graph I' = (V, E) and a subgroup G < A, I' is said to be G-vertex
transitive, G-edge-transitive or GG-s-arc transitive if G acts transitively on V', E or
s-Arc respectively. A graph I' = (V) E) is called G-semisymmetric if it is G-edge
transitive but not G-vertex transitive. If G = A, then the term G is omitted in the
above notations.

If s =1, then l-arc-transitive means arc-transitive or simply symmetric.

It can be shown that a G-edge transitive but not vertex-transitive graph is nec-
essarily bipartite, where the two bipartite parts are orbits of G on V' and if I is
regular, then the two partites have the same cardinality.

The class of semi-symmetric graphs was first introduction by Folkman [4], in
which several infinite families of such graphs were constructed and eight open prob-
lems were posed. If p is an odd prime then Folkman proved there is no semi-
symmetric graph of order 2p?. In [3] semi-symmetric graph of order 2pg, where p
and ¢ are distinct primes was classified, while semi-symmetric graphs of order 2p?, p
prime, were classified in [7]. Classification of cubic semi-symmetric graphs of various
order such as 6p3, 28p2, 18p™, 4p3, 6p2, 6p3, 8p?, 10p?, where p is a prime number,
was considered by several authors.

2. Preliminary Results

In the following, some results which are used to prove our main results are listed.

THEOREM 2.1. [5] Let T be a connected cubic semi-symmetric graph and G <
Aut(T). Then the vertex stabilizer of G has order 2" - 3, where 0 < r <T.
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THEOREM 2.2. [6] Let I' = (V, E) be a connected cubic semi-symmetric graph
with bipartite set V.=UUW. Let N be a normal subgroup of A = Aut(I"). If N is
intransitive on both U and W, then N acts semi-regularly on both U and W and I'
is an N-regular covering of an % semi-symmetric graph.

3. Main Results

Our aim is to present our results on cubic semi-symmetric graphs of order 14p?, 20p,
34p3, 20p? and 12p>.

THEOREM 3.1. [2] If T is a cubic semi-symmetric graph of order 14p*, p prime,
then p =3 and I' is the Tuttss 12-cage.

THEOREM 3.2. [8] IfT" is a cubic semi-symmetric graph of order 20p, p prime,
then p = 11.

THEOREM 3.3. [9] There is no cubic semi-symmetric graph of order 20p*, p
prime. Therefore, every cubic edge-transitive graph of order 20p? is necessarily sym-
metric.

But further investigations on semi-symmetric graphs of order 34p3 and 12p?, p
prime, yield the following results which are still under review.

THEOREM 3.4. If I is a semi-symmetric cubic graph of order 34p, p prime,
then p = 17.

THEOREM 3.5. If I is a semi-symmetric cubic graph of order 12p®, p prime,
thenp=>5orp=T.

4. Proofs
Here we outline the proof of Theorem 3.1.

LEMMA 4.1. Let T be a connected cubic semi-symmetric graph of order 14p,
p # 7 and odd prime, then p =13 and T is the graph S182 in Conder et al. list [1].

PrROOF. Let I' = (V, E) be a connected cubic semi-symmetric graph of order
14p and let A = Aut(T"). Then I' is bipartite. Let U and W be its two parts. Then
|U| = [W| = Tp. If A= Aut(T'), then, by Theorem 2.1, we have |[A| =2"-3-7-p
with 0 < r < 7. By [1], if p < 53, then such graphs exist only when p = 13. Now
we may assume p > 53.

We distinguish two cases.

Case 1 N is not solvable. In this case, N itself must be a simple group. Because of
IN||2"-3-7-p, N must be a K3 or a K -group. If N is a K3-group, then
N = As, Ag, Ly(7), since we have assumed p > 53, none of the above cases
are possible. If N is a K -group, then again we do not obtain a possibility
for N. This is because |N| | 2°-3 -7 - p and examination of groups in the
list of Ky-groups rules out N.

Case 2 N is solvable. In this case N = ZF |U| = |V| = 7p implying that N is
intransitive. t*|7p, hence r = 7 or t. Let N = Z;, consider the quotient

graph I'y = £ of T relative to N, where I'y is a cubic %—semi—symmetrio

N

120



SEMI-SYMMETRIC GRAPHS OF CERTAIN ORDERS

graph of order 2p. But, by [4], such a graph does not exist. Let N = Z,.
Then I'y is a cubic %—semi—symmetric graph of order 14. But such a graph
does not exist by [1].

O

THEOREM 4.2. Let I be a cubic semi-symmetric graph of order 14p?, where p # 7
odd prime. Then p =3 and " is isomorphic to the Tuttes 12-cage.

PRrOOF. By [1], we may assume that p > 7. For p < 7 only for p = 3 the
Tuttes 12-cage is a connected cubic semi-symmetric graph of order 14 x 32 = 126.
Since I' = (V, F) is a connected semi-symmetric graph of order 14p?, T is bipartite
with parts U and W, |U| = |W| = Tp®. We set A = Aut(T'). By Theorem 2.1,
|A| =27-3-7-p%. Let N be a minimal normal subgroup of A. Then |[N| | 2"-3-7-p?.
N is a product of isomorphic simple groups.

Case 1. N is not solvable. Then N is a simple non-abelian group. If N is not
transitive on U and W, then N acts semi-regularly on both U and W.
Hence |N| | 14p?, a contradiction because 4 | | N|. Therefore, N is transitive
on at least one of U or W implying 7p? | |N|. Therefore |N| =2°-7-p? or
25.3.7-p?, where 0 < s < r. Hence N is a K3 or a K, simple group. If N is
a Ks-group, then only N = PSLy(8) of order 23-32.7 with p = 3 is possible
which not the case because we have assumed p > 7. If N is a K, -group of
order 2°-3-7-p? 0 < s <r <7 no possibility arises.

Case 2. N is solvable group. Hence N = ZF where r is a prime number. Since

|U| = |W| = Tp? N is in transitive on both U and W and is semi-regular on

U and W. Therefore r* | 7p? hence r = 7 or p. If N = Z;, then the quotient

graph I'y is a cubic %—semi—symmetric graph of order 2p?, a contradiction
because by [4] such graphs dont exist. If N = Z,, then I'y is a cubic %—
semi-symmetric graph of order 14p. Now, by Lemma 4.1, p = 13. Therefore
I" is a connected cubic semi-symmetric graph of order 14 - 132 = 2366 which
can be proved it does not exist. This is by an unpublished result of M.
Conder and P. Potonik who obtain a list of cubic semi-symmetric graphs of
order up to 10000.

If N =2 Z,, then I'y is cubic %—semi—symmetric graph of order 14, which, by [1],

does not exist. U
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R[z,0]/(z™t!) (n > 1) is quasi-morphic then so is R. It is also proved that R is a regular ring
provided that R[z;c]/(z"t1!) is morphic. Some applications of our results are provided.
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1. Introduction

Throughout this paper we assume that R is an associative ring (not necessarily
commutative) with unity. If X C R then the notations r.anng(X) (Lanng(X))
denotes the right (left) annihilator of X with elements from R and it is defined
by {r € R| Xr =0} ({r € R| rX = 0}). Nicholson and Campos, in 2004 [9],
called a ring R left morphic if for any a € R, there exists an element b € R such
that l.anng(a) = Rb and Ra = lLanng(b). Equivalently, a ring R is left morphic if
and only if for every @ € R, R/Ra ~ l.anng(a). Camillo and Nicholson, in 2007
[2], generalized this concept to the quasi-morphic ring. They called a ring R left
quasi-morphic provided that for any a € R, there exist elements b, c € R such that
l.anng(a) = Rb and Ra = lLanng(c). Right (quasi-)morphic rings are defined in the
same way. A left and right (quasi-)morphic ring is called (quasi-)morphic. These
concepts have been of interest to a number of researchers, for example see [1, 3]
and [4]. Clearly, every left morphic ring is left quasi-morphic however the converse
is false. While for a commutative ring R, these two concepts coincide. Recall that a
ring R is said to be (unit-)regular if for every x € R, there exists u € R (u € U(R))
such that @ = aua. For more information on the theory of regular rings, see [6].
Every regular (resp., unit-regular) ring is quasi-morphic (resp., morphic) however
the converse does not hold true. It is proved that unit regular rings are precisely
regular and (left)morphic rings. For more details, see [2], [5] and [9].

The relations between regular (resp., unit-regular) rings and quasi-morphic (resp.,
morphic) rings have been focus of the mathematicians. For instance, it has been
proved that if R is a regular ring then for any n > 1, R[z]|/(z"™) (n > 1) is quasi-
morphic [8, Theorem 4] and the converse has been asked as the following question
in [8, Question 1]:

QUESTION 1.1. Let n > 1 be an integer and R[x]/(z"™!) is left and right quasi-
morphic. Is it true that R is a regular ring?
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Moreover, if R[z]/(z""') is left (quasi-)morphic where n > 1, then R has also

the property [8, Lemma 10]. It has been shown that for an integer n > 1, a ring R
is unit regular if and only if R[z]/(2™*!) is morphic [8, Theorem 11]. Moreover, by
[7, Corollary 3], if R is a unit-regular ring and o : R — R is an endomorphism such
that o(e) = e for all € = e € R, then R[x;0]/(z"™) (n > 0) is left morphic.
These motivate us to study (quasi-)morphic property for the skew polynomial ring
R[z;0]/(z") where o is a ring homomorphism on R. We show that if n > 1 and
R[x;o]/(x™*1) is left quasi-morphic, then R is also left quasi-morphic. Besides, it
will be shown that this result also is true for the morphic’s case provided that o
is an isomorphism. Moreover, we will prove that a ring R is regular provided that
R[z;0]/(z") is left and right morphic for some (n > 1). As an application, some
of results in [8] are generalized.

2. Main Results

Let R be a ring. We remind that the ring of polynomials in indeterminate x over R
is denoted by R[x]. Let 0 : R — R be a ring homomorphism. The skew poly-
nomial ring R[z;o] is defined to be the set of all left polynomials of the form
ag + a1x + -+ + a,x" with coefficients ag,...,a, € R. Addition is defined as
usual, and multiplication is defined by using the relation xr = o(r)x where r € R.
Let n > 0 and S := R[z;o]/(z"). In whole of the paper, note that for any
a=>3"_a;x" € R[r;o], welet @ =Y.'  a;z' € S be the image of a.

In [8], authors have been studied the (quasi-)morphicness of the ring R[z|/(z"!)
(n > 1). Here we investigate relation between quasi-morphic property for the skew
polynomial ring R[z;c]/(z"™) (n > 0) and (regularity) quasi-morphicness of the
ring R. First we prove the following proposition.

PROPOSITION 2.1. Let R be a ring, 0 : R — R be an endomorphism and n > 0
be an integer. If Rlx;o]/(x™"Y) is left (right) quasi-morphic then so is R.

PROOF. Assume that S := R[z;0]/(z"™) is left quasi-morphic and a be any
nonzero arbitrary element of R. Therefore there exists an element o = E?:o a;xt €
S such that lanng(a) = Sa. It is easy to see that lanng(a) = Rag. By our
assumption on S, Saz™ = lanng(3) where § = > bz’ € S. Thus az"f = 0
and so Y r  ao”(b;)z"*" = 0. Thus ao™(by) = 0 and so Ra C Lanng(o™(by)).
Let r € Lanng(o™(b)). Therefore ra"f = > 1  ro™(b)a™" = ro™(by)a™ = 0.
Thus ra™ € lanng(8) = Saz". Therefore ra™ = yaz™ where v = > ¢z’ € S.
Hence rz"™ = cpaz™ and so r = cpa € Ra. Therefore Lanng(c"(by)) C Ra. Thus
Ra = l.anng(c™(by)) which proves the theorem. The proof of right quasi-morphic is
similar. U

We note that by the following example the converse of Proposition 2.1 does not
hold in general even the case ¢ is an isomorphism on R.

EXAMPLE 2.2. Assume that R = Zy X Zy and 0 : R — R is defined by o(a, b) =
(b,a). We note that R is a regular ring and o is a ring isomorphism. Therefore
R is right and left quasi-morphic [2]. We show that S := R[z;c]/(z?) is not left
quasi-morphic. To see it, let b = (0,1) € R. On the contrary, suppose that S is left

124



ON (QUASI-)MORPHIC RINGS

quasi-morphic. Therefore there exists a + dx € S such that Lanng(bz) = S(a + dx).
Thus ab = 0 and so a = (a;,0) where ay € Z,. Since o(b)b = 0, o(b) € lLanng(bx).
This shows that a # 0 and so a = (1,0). On the other hand, « € Lanng(bz). Thus
r = (81 + s9x)(a + dx) where s; = (t;,w1) € R and sy = (t2,ws) € R. Therefore
sia = 0 and s;d + seo(a) = 1. Hence a = a(s1d + sq0(a)) = asyo(a) = sqao(a) = 0.
It is a contradiction.

PROPOSITION 2.3. Let R be a ring and 0 : R — R be a ring isomorphism. If
R[z;0]/(z"™) (n > 0) left morphic then R is also left morphic.

PROOF. Assume that n > 0 and S := R[x;o]/(z"") is left morphic. Let a be
any nonzero arbitrary element in R. Thus there exists o = > 2’ € S such that
lanng(a) = Sa and lanng(a) = Sa. Therefore aa = aa = 0 and so arg = roa = 0.
Hence Ra C lanng(rg) and Rrg C lanng(a). It is easy to see that l.anng(a) = Rry.
Now assume that r € Lanng(rg). Therefore 2"ra = o™ (rrg)z™ = 0 and so z™r €
Lanng(a) = Sa. Thus there exists 8 = Y bz’ € S such that 2™r = fa and it
shows that o™(r) = b,0™(a). Since ¢ is an isomorphism, 0™ (s) = b,, for some s € R.
Therefore 0™ (r) = 0"(sa) and so r = sa € Ra. Thus Lanng(rg) = Ra. The proof is
now completed. l

We note that the converse of the above proposition does not hold true. To see
it, consider the ring R and endomorphism ¢ mentioned in Example 2.2. In fact R
is unit-regular and so morphic while R[x;o]/(x?) is not even left quasi-morphic.

As an application of Propositions 2.3 and 2.1, we can deduce the following corol-
lary which is proved in [8, Lemma 10].

COROLLARY 2.4. Let n > 0 be an integer. If R[x]/(x™*) is left quasi-morphic
(resp., left morphic), then so is R.

Proor. It follows from Propositions 2.3 and 2.1 by setting o = 1. 0J

In the next we investigate morphic property for R[z;c|/(z"™!) without the as-
sumption that “o is an isomorphism”.

THEOREM 2.5. Let R be a ring, 0 : R — R be an endomorphism and n > 1 be
an integer. If R[z;o]/(z" ) is morphic then R is regular.

PROOF. Let S := Rx;o]/(z™"") be morphic. Then by Proposition 2.1, R is
quasi morphic. Let a € R be any nonzero element. Therefore there exists an
element b € R such that Ra = lLanng(b). Let o := bz™. Since S is left morphic,
there exists 8 =Y, bz’ € S such that Lanng(a) = S and Sa = Lanng(3). Since
S is also right morphic, there exists v € S such that 5S = r.anng(vy). Therefore

r.anng(a) = r.anng(l.anng(8)) = r.anng(l.anng(r.anng(y))) = r.anng(y) = 85.

We note that za = o(b)z™"! = 0 and also axz = 0. Thus z € Lanng(a) = S8
and x € r.anng(a) = 8S. Therefore there exist Y . rz’ and D1 s;z' in S such
that = = (37 rix") (i bix’) and © = (D01, bix") (Do, six”). Thus roby = 0,
roby + 110(by) = 1, boso = 0 and bys; + byo(sg) = 1. Now we have the following:
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o = 7“0(6081 + 610'(80)) = ’I“oblo'(SQ),
O(SQ) = (Tobl + 7“10'(b0))0'(80) = Tobld(SO).

Thus o = O(SQ) and so bo = (boSl + 610'(30))[)0 = boslbo + bﬂ“obo = boSlbo. Therefore
bo is regular. Since Lanng(«) = Sf, it is routine to see that Rby = lLanng(b) = Ra.
We show that a is regular. To see it, let e := s1by. It is easy to see that e? = e and
Rby = Re. Therefore Ra = Re and so a = ae = as1by. Since by € Ra, by = ta where
t € R. Therefore a = asita and so a is regular, as desired. (l

COROLLARY 2.6. Let R be a ring, o : R — R be a ring homomorphism. If
R[z;0]/(z"*) is morphic (for some n > 1), then the following statements hold:

1) If o is an isomorphism then R is unit reqular.
2) If R is commutative then R is unit regular.

PROOF. Since R[z;c]/(z"™) is morphic and by Theorem 2.5, R is a regular
ring.
1) By Theorem 2.3, R is morphic. We note that a morphic and regular ring R
is unit-regular [9, Proposition 5.
2) We just note that every commutative regular ring is unit regular.
O

We end the paper with the following corollary which is proved in [8, Theorem
11], as an application of Theorem 2.5. This is also a partial an answer to a question
1.1 raised in [8, Question 1].

COROLLARY 2.7. Let R be a ring and n > 1. If R[x]/(z") is morphic then R
15 unit-reqular.

PROOF. Let o be an identity homomorphism on R. Now apply Corollary 2.6. [
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1. Introduction

Hyperdiagram has introduced as a generalization of hypergraph by Hamidi [6]. Hy-
perdiagram has not restrictions that for hypergraphs are problems and so can apply
algebraic structures more. A hypergraph, i.e, a family of subsets (called edges) of
a finite vertex set, is a natural generalization of the concept of a graph to attack
combinatorial problems beyond graphs (Berge, 1979) [2]. Graphs and hypergraphs
can be used to describe the network systems. The hypergraph computation has at-
tracted the attention of manyresearchers in computer science, since it is related to a
fundamental aspect ofset families and hence there are many important applications
in a wide varietyof areas in computer science, especiallyin data mining, logic, and
artificial in-telligence. Today, some features of hypergraphs are used in computer
science, notably in machine learning, and there has been a lot of research about
using hypergraphs in relational databases, which might be viewed as a sort of data
mining. The reason is why hypergraphs seem apt to depict relations in information
systems, social networks, document centered information processing, web informa-
tion systems and computer science, are the relationships among services within a
service oriented architecture [4, 5, 8, 9]. Further materials regarding graph and
hypergraph are available in the literature too [1, 2, 4, 5, 7]. George Boole, an
English mathematician, published one of the works that founded symbolic logic in
1847. His combination of ideas from classical logic and algebra resulted in what
is called Boolean algebra as modern algebra(a complemented distributive lattice).
The variables stand for statements that are either true or false. The symbols +, *, —
represent the logical symbols(Boolean operators) or, and, not, respectively and are
equivalent in the truth tables in logic. Although truth tables use T and F (for
true and false respectively) to indicate the state of the sentence, Boolean algebra
uses 1 and 0. Concepts of Boolean algebra were applied to electronic switching cir-
cuits by Claude Shannon in 1937, and became a standard part of electronic design
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methodology by the 1950s [3]. In this regards, this paper considers the notation
of switching functions and investigates the relation between of hypergraphs and
switching functions. The main our motivation from this paper is extraction an ir-
reducible switching expression from any T.B.T(total binary truth table). In final,
we apply these concepts and prove that every T.B.T corresponds to a Minimum
Boolean expression via unitors set and presents some conditions on T.B.T to obtain
a Minimum irreducible Boolean expression from switching functions.

2. Preliminaries

In this section, we recall some definitions and results, which we need in what follows.
Let X be an arbitrary set. Then we denote P*(X) = P(X) \ (), where P(X) is
the power set of X. We apply the notation of total binary truth table (T.B.T) on
Boolean variables and introduce the concept of hyperdiagramable Boolean functions,
Boolean functionable hyperdiagrams and investigate some of their properties.

DEFINITION 2.1. [6] Let G = {21, x9,...,2,} be a finite set. A hyperdiagram on
G is a pair H = (G, {E}},_,) such that for all 1 < k < m, E; C G and |E| > 1.
Clearly every hypergraph is a hyperdiagram, while the converse is not necessarily
true.

We say that two hyperdiagrams H = (G,{Ey},_,) and H' = (&, {E,;}Zil) are
isomorphic if m = m’ and there exists a bijection ¢ : G — G’ and a permutation 7 :
{1,2,....,m} = {1,2,...,m'} such that for all x,y € G, if forsome 1 < i < m,z,y €
E;, then p(x),¢(y) € Erq), if for all 1 <i < m,z,y € E;, then ¢(z),0(y) € E-u)
and if for some 1 < i < m,z € E;, forall 1 < j < m,y € Ej, then p(x) € E;
and ¢(y) ¢ E;. Since every hypergraph is a hyperdiagram, define an isomorphic
hypergraphs in a similar a way.

3. Relation Between of Hyperdiagram and Boolean Expression

We consider every (switching)Boolean function f : B, — B = {0,1} by

o, me, 0 mn) = 300 15,7 and h : B, — B = {0,1} by h(zy, 2, ..., 2,) =
| Zf;l Z;, where for all 1 < i < n,7; is a literal (Boolean variable or the comple-
ment of a Boolean variable) and m, j, k; € N. Let n € Nym € N*, 1, 29,..., 2, be
arbitrary Boolean variables and for all 0 < 7 < m, f(m) (1,22, ...,2,) be Boolean

functions. We will denote a total binary truth table (T.B.T) on Boolean variables
xr1,T9,...,T, by a set

T(f(0)7f(1)7'"’f(m)’x_17"'7x_n) = {f(0)7f(1)7'"7f(m)7(x17"’7xn)}’

where for all 0 < j < m, f0™(x,2,,...,2,) are Boolean functions(see a Ta-
ble 1) and for m = 0, we will denote it by T(f, z1,22,...,2,). Define a bi-
nary operation “+”on T(f, g,z1,...,2,) by (f+9)(x1,...,2,) = f(z1,...,2,) +
g(x1,...,2,), a binary operation “.” on T (f,g,21,...,2,) by (f.9)(x1,...,2,) =
flz1,...,xn).9(21, ..., x,) and a unary operation

c:T(f,g,21,...,20) = T(fr9,21,...,2,),
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TaBLE 1. T. B. T with n variables T(f©, f0 . f™) 21 2o, ... 2,).

r1 xo . o [O(1,..., 1) f(l)(xl,...,a:n) e fM (g ay)
0 0 ... 0 1(0)(;21,...@”) fl(l)(xl,...,xn) fm)(xl,...mn)
o o ... 1 éo)(xl,...,xn) él)(xl,...,xn) Q(m)(xl,...,xn)
0 0 .01 (@m0 )
11 ... 1 2(2)(;61,...7:%) féi)(xl,...,xn) z(nm)(xl,...mn)

by ¢(x;) = 1 — a;, and ¢(f(xq,...,2,)) = 1 — f(xy1,...,2,). Define a relation ~
on a T.B.T T(f,g,z1,%2,...,2,) by f ~ g if and only if for all (z1,zs,...,2,) €
B, we have f(xy,z9,...,2,) = g(x1,29,...,2,)(f = g). It is clear that ~ is a
congruence equivalence relation on 7 (f, g, 1, za,...,z,). For 0 < j, 7/ < m, we say
that T(fU), w1, 29,...,2,) and T'(fU), 21, z9,...,1,) are equivalent, if ) ~ f"),

THEOREM 3.1. (T(f, f',z1,...,2,),+,.,¢) is a Boolean algebra.

DEFINITION 3.2. Let T(f,z1,2,...,2,) be a T.B.T.
(i) for all 1 < j < m, consider Ejf = {71,72,..., 7, } and Hf = (Gf, {Ejf};”zl),
where G = (Ui, z:) U (UL, Ejf)

(ii) Boolean function f(z1,...,,) is called a hyperdiagramable Boolean func-
tion, if H/ is a hyperdiagram and we say H/ is a hyperdiagram based on a
Boolean function f(zq,...,z,).

(iii) Let H' = (G',{E/}?_,) be a hyperdiagram. Then H’ is sailed to be a
Boolean functionable hyperdiagram, if there exists a Boolean function as
f(x1,...,2,) such that H/ = H'" and we call a Boolean function f(xy, ..., z,)
is obtained from hyperdiagram H’.

LEMMA 3.3. Let T(f,x1,22,...,2,) be a T.B.T. Then f(x1,xs,...,2,) iS a
hyperdiagramable Boolean function.

THEOREM 3.4. FEvery hyperdiagram is a Boolean functionable hyperdiagram.

DEFINITION 3.5. Let n € Nand T (f,x1,22,...,2,) bea T.B.T. Forall 1 < j <
2" define Unitor(f;) = {(x1,22,...,2s) | fj(z1,22,...,2,) = 1} and will denote by
Un(f;), in a similar a way Unitor(f) is defined and it is denoted by Un(f).

DEFINITION 3.6. Let n € N and 7 (f,x1,22,...,2,) bea T.B.T. Forall 1 <j <
2" define Kernel(f;) = {(z1,22,...,2,) | fj(x1,22,...,2,) = 0} and will denote by
Ker(f;), in a similar a way Kernel(f) is defined and it is denoted by Ker(f).

THEOREM 3.7. Let n € N. Then every T(f #0,x1,x2,...,2,) corresponds to a
hyperdiagram.

We will call the hyperdiagram H in Theorem 3.7, as Boolean function—based
hyperdiagram and will denote by (H,T).
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THEOREM 3.8. Let 0 < 7,5 < m. If T(fD,xy,... . 2,) and T'(f9) 21, ... )
are equivalent, then their Boolean function-based hyperdiagram are isomorphic.

DEFINITION 3.9. Let n € Nm € N*, 1 <k <nand T(f©,..., f™ 2,...,2,)

be a T.B.T, where for 0 <t < m, fO(zy,...,2,) = 21221 fi(t)(:cl, Tg,...,Z,). Then
(i) I(n, fO,1) = {5 | £ (21,22, ...,2,) =1, where 1 < j < 2"};
(ii) P(k,21,79,...,28,1) = {H?:1x_i | (Hle xi)(H?:kH 7;) = 1}.

THEOREM 3.10. Letn € N1 < j <n and T(f,z1,22,...,2,) be a T.B.T. Then
‘P(k' :j,.’lfl,xg,...,ﬂfk 1)’ = 2n—]

DEFINITION 3.11. Let n € Nm € N, 1 <k <nand T(f©, ..., f™ 2, ..., 2,)

be a T.B.T, where for 0 <t < m, fO(z,...,2,) = Hf; fl-(t)(l'l,l‘g, ..o, Tp). Then
(i) Z(n, f9,0) = {j | f](t)(xl,xg, ooy Ty) =0, where 1 < j <27},
(i) S(k, 21,2, 2k, 0) = {220, Ti | Zf:l Ti + Z?:k+1x_i = 0}.

THEOREM 3.12. Letn € N1 < j<nand T(f,x1,22,...,2,) be a T.B.T. Then
‘S(/’C :j,.fEl,.TQ,...,.QTkO)‘ = 2",

THEOREM 3.13. Fvery T.B.T corresponds to a Boolean expression.
THEOREM 3.14. Every T.B.T corresponds to a Minimum Boolean expression.

Let n,k, A € N*. A hyperdiagram H = (G, {E;}"_,) is called a M-intersection
hyperdiagram, if for all 1 <, 5 <k, we have |E; N E;| = A.

THEOREM 3.15. Let n € N and T (f,x1,29,...,2,) be a T.B.T. If (H,T) is a
0-intersection hyperdiagram, then the T.B.T corresponds to an irreducible Boolean
exTPTession.
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1. Introduction

Generalized groups are an interesting extension of groups. This notion was first
introduced by Molaei in [5]. A generalized group is a nonempty set G admitting an
operation called multiplication, which satisfies the following conditions:
1) (zy)z = z(yz) for all x,y, z € G,
2) For each x € G there exists a unique element z € G such that zx = zz = x
(we denote z by e(z)),
3) For each x € G there exists an element y € G called inverse of x such that
xy = yr = e(x).
It is well known that each x in G has a unique inverse in G, the inverse of z is
denoted by 27! [5]. Moreover, for a given = € G, e(e(z)) = e(z), (z71)~' = z and
e(z™!) = e(x).

DEFINITION 1.1. [3] If G and H are two generalized groups, then a map f :
G — H is called a homomorphism if f(ab) = f(a)f(b) for all a,b € G.

THEOREM 1.2. [3] Let f : G — H be a generalized group homomorphisms. Then

1) f(e(a)) =e(f(a)), is an identity element in H for all a € G;

2) f(a™') = (f(a)) ", for alla € G;

3) if K is a generalized subgroup of G, then f(K) is a generalized subgroup of
H;

4) if D is a generalized subgroup of H and f~Y(D) # 0, then f~1(D) is a
generalized subgroup of G.

DEFINITION 1.3. [3] A generalized group G is called a normal generalized group
if e(ab) = e(a)e(b) for all a,b € G.

REMARK 1.4. For every a, b belong to a generalized group G we have
e(e(a)e(b)) = e(ab) [1].
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DEFINITION 1.5. [3] A nonempty subset H of a generalized group G is called a
generalized subgroup if, it is a generalized group under the operations of G.

THEOREM 1.6. [3] If G is a generalized group and a € G, Then G, = {x € G :
e(x) =e(a)} is a generalized subgroup of G. In fact, G, is a group.

DEFINITION 1.7. [3] A generalized subgroup N of a generalized group G is
called a generalized normal subgroup if there exist a generalized group F and a
homomorphism f : G — E such that for all a € G we have N, = () or N, = ker(f,),
where N, := NNG, , f,:= flg, and ker(f,) ={x € G, : f(x) = f(e(a))}.

2. Main Results

ProprosiTiON 2.1. If f : G — H 1is a generalized groups homomorphisms and G
is a normal generalized group, then f(G) is a normal generalized subgroup of H.

PrRoOF. We know that for all f(x), f(y) € f(G) it follows that e(f(z)f(y))

e(f(zy)) = fle(zy)) = fle(x)e(y)) = fle(x))f(e(y)) = e(f(x))e(f(y))- So, f(G) is

a normal generalized subgroup of H. 0
PROPOSITION 2.2. Let G be a generalized group in which e(a)b = be(a) for any

a,b e G. Then G is a normal generalized group and even more, (ab) =bta"t.

PrROOF. We know that ab = abe(b) and by assumption, e(b)ab = ab. So e(ab) =
e(b). Similarly, we obtain e(ab) = e(a). Then, G is a group and proof is complete.
In fact, we show more than it was claimed. 0

PROPOSITION 2.3. G is a normal generalized group if and only if e(x)e(y)e(z) =
e(x) for every x,y € G.

PROOF. It’s clear that e(z)e(y)e(x) € G for every x,y € G. Since G is normal
generalized group, we have

|
N
8
~
o
—~
<
~—
Q
—
8
~—

Then, e(z)e(y)e(x) is an idempotent element of the group Gy and so,
e(x)e(y)e(x) = e(x). Conversely, let e(x)e(y)e(x) = e(x) for every z,y € G. Then
we have

(e()e(y))(e(w)e(y)) = (e(x)e(y)e(z))e(y) = e(z)e(y).

Since e(e(z)e(y)) = e(zy), So e(x)e(y) is an idempotent element of the group Ge(zy).
Now, it is obvious that e(z)e(y) = e(zy) and G is a normal generalized group. [

PROPOSITION 2.4. If A and B are generalized normal subgroups of G, then ANB
1s also a generalized normal subgroup of G.
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PROOF. Since A and B are generalized normal subgroups of G, there exist gen-
eralized groups homomorphisms f : G — E and g : G — F, respectively, such that
for every a € G

A, =0 or A, = ker(fa),

and
B, =0 or B, = ker(ga).

Now consider mapping h : G — E x F defined by = — (f(z),g(z)). h is direct
product of two maps g and h and so, it is a generalized groups homomorphism. It
is clear to see that , if (AN B), # 0, then (AN B), = A, N B, = ker(f.) Nker(g,) =
ker(hy). Therefore, AN B is a generalized normal subgroup of G. O

PROPOSITION 2.5. Let f : G — H be a onto homomorphism between generalized
groups and N is a generalized normal subgroups of H. Then f~'(N) is a generalized
normal subgroup of G.

PROOF. Since N is a generalized normal subgroup of H, there exists a gen-
eralized groups homomorphism ¢ : H — FE such that for every b € H, N, = ()
or Ny, = ker(gy). Suppose the mapping gof : G — E. gof is a homomorphism.
Let (f7'(N)), # 0, then (f7(N)), = {z € G, | f(z) € N}. Since z € G,, so
e(f(x)) = f(e(x)) = f(e(a)) = e(f(a)). In the following we have

(fTH(N))a = {z € Ga | f(2) € Ny = ker(gy))
={z € Ga | g(f(x)) = gle(f(a)))}
={z € Ga | (gof)(x) = (g0f)(e(a))}
= ker(gof)a-
Therefore, f~1(N) is a generalized normal subgroup of G. O

PROPOSITION 2.6. Normality is preserved on taking direct product, i.e. if A is
a generalized normal subgroup of G and B is a generalized normal subgroup of H,
then A x B is a generalized normal subgroup of G x H.

PROOF. Since A is a generalized normal subgroup of GG, there exists a generalized
groups homomorphism f : G — FE; such that, A, = (0 or A, = ker(f,). Since B is a
generalized normal subgroup of H, there exists a generalized groups homomorphism
g : H — E, such that, B, = () or B, = ker(gy). Now suppose the mapping
l: Gx H — E; x Ey defined by (x,y) — (f(z),9(y)). it is clear that [ is a
generalized groups homomorphism. if for (a,b) € G x H, (A X B)ap) # 0, then we
have

(A X B)(a,b) = (A X B)H(Ga X Hb) = (AﬂGa> X (BﬂHb) :Aa X Bb
= ker(f,) x ker(gp)
= k:er(l(ajb)).

So A x B is a generalized normal subgroup of G x H. O
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3. Resolvability of Topological Generalized Groups

E. Hewitt in 1943 [2] introduced the notion of resolvability. He defined a topological
space X is resolvable if it can be represented as the union of two disjoint dense
sets, otherwise it is irresolvable. In the same paper [2], it is defined that a space
is hereditarily irresolvable if every nonempty subspace of it is irresolvable. We also
know that a homogeneous space with a resolvable subspace is itself resolvable [6].

THEOREM 3.1. [2] Every topological space X has the unique representation X =
FUE, where F is closed and resolvable, E is open and hereditarily irresolvable and
FNE=0. This representation is called the "Hewitt representation” of X.

In the main reference, for the Hewitt representation of a topological space X,
open and hereditarily irresolvable space is denoted by G. But in this paper, we show
that by E, because we took G for generalized groups.

Sh. Modak in his paper ”Relativization in resolvability and irresolvability” [4]

in 2011, influenced by the famous mathematician A. Arkhagel’skii, relativized the
property of resolvability and irresolvability. In this paper, he states that a nonempty
subset A of a topological space (X, 7) is called resolvable relative to X or resolvable in
X if there are two dense subsets Dy and Dy of (X, 7) with Dy NA# D, DoNA#D
such that Dy N Dy N A = (; otherwise, it is called irresolvable relative to X or
wrresolvable in X.
In the section 2 of [4], it is mentioned that for Y C X, resolvability of Y with
respect to its relative topology does not necessarily imply resolvability of ¥V in X,
and it is also given an example that unfortunately doesn’t work for it. In the next
proposition, we fail this statement.

PROPOSITION 3.2. Let X be a topological space. Then every resolvable subset A
of X is resolvable relative to X (or resolvable in X ).

PROOF. Suppose that A C X be resolvable. So, there exist two dense subsets
Dy and D, of A which satisfy D = A = Dy and D; N Dy = . Now, we get
D;i=DyU (X —A) and Ds = Dy U (X — A) that satisfy the following conditions:

i) D; = X = D;.
ii) DiﬁA#@, DéﬂA#@.

iii) DiﬂDéﬂA:qj.

Therefore, we can say that A is resolvable relative to X. 0

This proposition is justified by the following example.

EXAMPLE 3.3. Let X = {a,b,c,d}, 7 = {0, X, {a},{b,c},{a,b,c}}. Tt is clear
that
C(7)(closed subsets) = {0, X,{b, c,d},{a,d},{d}}.
Let Y = {b,c,d} C X. Then 7y (relative topology) = {0,Y,{b,c}} and C(1y) =
{0,Y,{d}}. Now, we can see that {b} , {c, d} with relative topology are dense in YV’
and {b} N{c,d} = 0. Therefore (Y, 7y) is a resolvable space. On the other hand, we
have

D(X,7)={X,{a,b},{a,c},{a,b,c},{a,b,d},{a,c,d}}.
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It is obvious that Dy = {a, b} , Dy = {a, ¢} both are dense in (X, 7). also D1NY # 0,
DyNY # 0 and DyNDyNY = (. Hence Y is resolvable in X.

Note that one can easily verify that for every open subset Y of a topological
space X, resolvability of Y in X and resolvability of Y with respect to the relative
topology are equivalent.

The next result is closely related to [4, Theorem 2.12] and previous proposition.

PROPOSITION 3.4. Let X be a irresolvable topological space with the Hewitt repre-
sentation X = FUE. Then a non-empty homogeneous subset A of X with intA # ()
is irresolvable if and only if int(AN E) # (.

PROOF. Suppose that int(A N E) = (. Since that intA # 0, it follows that
intA C X — E = F. The resolvability of F' implies that intA is resolvable. Hence
A is also resolvable, a contradiction. Thus int(AN E) # (.

Conversely, suppose that for A C X with intA # 0, int(AN E) # (. Then by in
[4, Theorem 2.12], we have that A is irresolvable in X. Now by contraposition of
Proposition 3.2, it is obtained that A is irresolvable. O
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1. Introduction

Let F be a free group freely generated by the countable set X = {1, x9,23,...}
and V be a variety of groups defined by the set of laws V' C F. Then for a group G,
two subgroups V(G) and V*(G) correspond to the variety V, are defined as follows:

V(G) = (v(gr,--,9:) | 915,09 € Go €V,
and
VANG)={9€Glv(gr . 9i-1.9i9, Gi+1,-- -, gr) = V(g1,- -, Gr),
YoeV,gr,...,9, €G, and i €{1,...,r}},

which are called the verbal and the marginal subgroups of G, respectively (see
[2, 4, 6]). It can be easily seen that V(G) and V*(G) are fully-invariant and
characteristic subgroups of G.

Let N be a normal subgroup of G and o € Aut(G), the group of all automor-
phisms of G. If N* = N (or Ng* = Ng for all g € GG), we shall say o normalizes N
(centralizes G/ N respectively). Now let M and N be normal subgroups of G. We let
Aut™(G) denote the group of all automorphisms a of G normalizing N and central-
izing G/N (or equivalently, [g,a] = g~'¢g* € N for all g € G), and let Cy v () (M)
denote the group of all automorphisms of Aut”(G) centralizing M. If we choose
N = V*(G), then Aut™ (@) is precisely the group of all marginal automorphisms of
G (see [3, 7]).

For € G, % denotes the conjugacy class of all 29 = g~'zg, where g € G. An
automorphism o of G is called a class preserving automorphism if 2® € z%, for all
x € G. The set of all class preserving automorphisms of GG, denoted by Aut.(G).

Recall an abelian p-group A has invariants or is of type (ag, as, . .., ay) if it is the
direct product of cyclic subgroups of orders p®', p*2, ..., p*, where a; > ay > -+ >
ap > 0. A non-abelian group that has no non-trivial abelian direct factor is said
to be purely non-abelian. By G’, Z(G), d(G) and ®(G), we denote the commutator
subgroup, the center, minimal number of generators and the Frattini subgroup of
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G, the intersection of all the maximal subgroups of G, respectively. Finally, let G
and H be any two groups. We denote by Hom(G, H) the set of all homomorphisms
from G into H. Clearly, if H is an abelian group, then Hom(G, H) forms an abelian
group under the following operation (fg)(x) = f(z)g(x), for all f,g € Hom(G, H)
and z € G.

Throughout this paper, all groups are assumed to be finite and V be a variety
of groups defined by the set of laws V' C F'.

2. Main Results

In this section, first we introduce the notion of V-nilpotent groups. This gives
the usual notion of nilpotent groups if V is the variety of abelian groups, see also
[5]. Then we find some results on marginal automorphisms of a finite V-nilpotent

p-group.
DEFINITION 2.1. Let G be a group. Then the normal series,
1=Go <G <--- <G =G,
is said to be a V-marginal series, if each factor is marginal, i.e.,
Gi1 /G < VH(G/Gy), 0<i<c—1.

A group G is said to be V-nilpotent if it has a V-marginal series; the shortest
length of such series is called the V-nilpotency class of G.

By [5], if G is a V-nilpotent group and N a non-trivial normal subgroup of G,
then N NV*(G) # 1. Specially V*(G) # 1.

Let G be a finite non-abelian p-group and V be a variety of groups defined by the
set of laws V C F. Assume that V*(G) < Z(G) and G/V(G) is abelian. Moreover
G/V(G), G/V(G)Z(G) and V*(G) are of types (ai,as,...,ax), (b1,bs,...,by) and
(e1,€2,...,€,). Since G/V(G)Z(G) is a quotient group of G/V(G), by [1, Section
25] we have m < k and b; < q; for all 1 < j <m.

Keeping fixed the above terminology, we prove the following theorem:

Theorem A. Let G be a finite V-nilpotent p-group such that V*(G) < Z(G) and
G/V(G) is abelian. Then Aut"” (G) = Cawv()(Z(Q)) if and only if Z(G) < V(G)
or Z(G) < ®(G), d(G/V(G)) =d(G/V(G)Z(G)) and ey < by, where t is the largest
integer between 1 and m such that a; > b;.

Let G be a finite non-abelian p-group and V be a variety of groups defined by
the set of laws V' C F. Assume that V*(G) < Z(G). Moreover G/G’" and V*(G)
are of types (ai,as,...,a;) and (e, es,...,€,).

The above notation will be used in the following theorem:

Theorem B. Let G be a finite V-nilpotent p-group such that V*(G) < Z(G). Then
Aut”" (@) = Aut®(G) if and only if G' = V*(G) or G' < V*(G), G is purely non-
abelian, d(G') = d(V*(G)) and ay = by, where (by,ba, ..., by), be invariants of G’
and t is the largest integer between 1 and m such that e; > b;.

In the following theorem, we give a necessary and sufficient condition on a finite
V-nilpotent p-group G for which Aut"” (@) = Aut.(G).
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Theorem C. Let G be a finite V-nilpotent p-group such that V*(G) < Z(G) and
G/V(G) is abelian. Then Aut'” (G) = Aut.(G) if and only if G/V*(G) is abelian,
V*(G) < V(G) and Aut.(G) =2 Hom(G/V(G)V*(G),V(G) N V*G)).

As an application of Theorems A, B and C, by setting V' = {[x1, 2], 24}, where

p is a prime, we have the following results. In this situation, V(G) = G'G? and
VH(G) = 0(Z(G)). We let (Z) = 0(Z(G)).

COROLLARY 2.2. Let G be a finite p-group. Then
Aut" (@) = Cy o126 (Z(@)).
if and only if Z(G) < ®(G).

COROLLARY 2.3. Let G be a finite p-group. Then Aut™@ (@) = Aut® (G) if
and only if G' = Q1 (Z(Q)).

COROLLARY 2.4. Let G be a finite p-group. Then Aut™?)(G) = Aut.(G) if and
only if G/ (Z(G)) is abelian, Q1 (Z(G)) < (G) and

Aut,(G) = Hom(G/®(G), 0 (Z(G))).
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1. Introduction

Let R be a commutative Noetherian ring, a be an ideal of R and M be an R-
module. For each i € Z, H.(M) denotes the i-th local cohomology module of M
with respect to a. One of the most various invariants in local cohomology theory is
the cohomological dimension of M with respect to the ideal a, i.e.

cd(a, M) := Sup{i € Ng|H.(M) # 0}.

In this paper, we consider the cohomological dimension of M with respect to the
"linked ideals” over it.

Following [5], two proper ideals a and b in a Cohen-Macaulay local ring R is
said to be linked if there is a regular sequence r in their intersection such that
a=(r):g band b = (r) :gr a. In a recent paper, [3], the authors introduced the
concept of linkage of ideals over a module and studied some of its basic properties.
Let a and b be two non-zero ideals of R and M denotes a non-zero finitely generated
R-module. Assume that aM # M # bM and let I C an b be an ideal generating
by an M-regular sequence. Then the ideals a and b are said to be linked by I over
M, denoted by a ~.an b, if bM = IM :3; a and aM = IM :; b.

In this paper, we consider the above generalization of linkage of ideals over
a module and, among other things, study the cohomological dimension of an R-
module M with respect to the ideals which are linked over M. In particular, in
Theorem 2.6 we show that if a is an ideal of R which is linked by I over M, then

cd(a, M) € {grade,; a, cd(a, HE"*M *(M)) + grade,, a},

where ¢ := ﬂpeAss%_V(a) p.

And in Corollary 2.9 it is shown that for every ideal b which is geometrically
linked with a over M, cd(a, HE*** *(M)) is constant and does not depend on b.
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Throughout the paper, R denotes a commutative Noetherian ring with 1 # 0,
a and b are two non-zero proper ideals of R and M denotes a non-zero finitely
generated R-module.

2. Cohomological Dimension

The cohomological dimension of an R-module X with respect to a is defined by
cd(a, X) := Sup{i € No|H.(X) # 0}.

In this section, we study this invariant via ”linkage”. We begin by the definition of
our main tool.

DEFINITION 2.1. Assume that aM # M # bM and let I C anb be an ideal
generated by an M -reqular sequence. Then we say that the ideals a and b are linked
by I over M, denoted a ~(rap b, tf bM = IM :pr a and aM = IM :p; b. The ideals
a and b are said to be geometrically linked by I over M if aM NbM = IM. Also,
we say that the ideal a is linked over M if there exist ideals b and I of R such that
a ~,um) b. Note that in the case where M = R, this concept is the classical concept
of linkage of ideals in [5].

The following lemma, which will be used in the next proposition, finds some
relations between local cohomology modules of M with respect to ideals which are
linked over M.

LEMMA 2.2. Assume that I is an ideal of R such that a ~n) b. Then

i) VI+Ann M = +/(aNb)+ Ann M. In particular, H: (M) = HL{(M), for
all .

ii) Let I = 0. Then, Hj,,  ap.pa(M) = Hi o (M) = Hy(M). In other words,
if M is faithful, then HL(M) = H}. (M).

OZRCl

PROPOSITION 2.3. Let I be an ideal of R such that a ~ ) b and set t =
grade,; I. Then cd(a+b, M) < max{cd(a, M),cd(b, M),t+1}. Moreover, if cd(a+
b, M) >t+1, e.g. a and b are geometrically linked over M, then the equality holds.

The following corollary, which is immediate by the above proposition, shows
that, in spite of [2, 21.22], parts of an R-regular sequence can not be linked over R.

COROLLARY 2.4. Let (R,m) be local and xq,...,x, € m be an R-reqular se-
quence, where n > 4. Then (x4, ...,2i;) o (Tijyp, .. Tay,), for all 1 < j < [F] and
any permutation (i1,...,19;) of {1,...,275} .

The following lemma will be used in the rest of the paper.

LEMMA 2.5. Let I be a proper ideal of R such that a ~.p b. Then, aﬁM can be
embedded in finite copies of %

The next theorem, which is our main result, provides a formula for cd(a, M) in
the case where a is linked over M.
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THEOREM 2.6. Let I be an ideal of R generating by an M -reqular sequence such
that Ass % = Min Ass% (e.g. M is a Cohen-Macaulay module) and a is linked by
I over M. Then

cd(a, M) € {grade,, a, cd(a, H&°M (M) + grade,, a},
where ¢ := ﬂpeAss%—V(a) p.

Proor. Note that, by Lemma 2.5, Assa%M C Ass % Set t := grade,, a.
Without loss of generality, we may assume that cd(a, M) # t. Hence, there ex-

ists p € Ass% — V(a), else, vVI+Ann M = v/a+ Ann M which implies that
cd(a, M) = t. We claim that
(1) grade,;(a +¢) > t.

Suppose the contrary. So, there exist p € Ass % and q € Ass? such that a+q C p.
By the assumption, p = q which is a contradiction to the structure of «.
Let A := {p|p € Ass 2L NV (a)}. Then, in view of Lemma 2.5,

va+Ann M = ﬂ pSup O ﬂp.
pEMinAss% peA

On the other hand, let p € Min A. Then, there exists ¢ € Min Ass% such that
q C p. Hence, again by Lemma 2.5, q¢ € A and, by the structure of p, q = p.
Therefore,

(2) \/a—i—AnnM:ﬂp.
peA
Whence, using (2), it follows that

VI+Ann M = ﬂ p= ﬂ pNec=+vanc+ Ann M.

M M
pEASS 717 pEAss 17

Now, in view of (1), we have the following Mayer-Vietoris sequence
(3) 0 — H{(M)® H(M) — H{(M) — N — 0,
for some a-torsion R-module N. Applying I's(—) on (3), we get the exact sequence
0 — HY(M) & To(HA(M)) = To(H}(M)) — N 2> Hy(HL(M)) = Hy (H}(M)) — 0,
and the isomorphism

HY(H{(M)) = H{(HLY(M)),for all i > 1.

Also, using [4, 3.4], we have H!*' (M) = HI(HL(M)), for all i € Ng. This implies
that

~ 1—t t .
N2
Hi(M){ = "im) v=t4d,
0 1=1,
0 otherwise.
Now, the result follows from the above isomorphisms. 0
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M is said to be relative Cohen-Macaulay with respect to aif cd(a, M) = grade,, a.

The following corollary, which follows from the above theorem, provides a precise
formula for cd(a, M) in the case where a is geometrically linked over M and shows
how far cd(a, M) is from grade,, a. Note that by [1, 1.3.9], grade,; a < cd(a, M).

COROLLARY 2.7. Let I be an ideal of R generating by an M -regular sequence
and a and b be geometrically linked by I over M. Also, assume that M is not relative
Cohen-Macaulay with respect to a. Then

cd(a, M) = cd(a, HE* " *(M)) + grade,, a.

REMARK 2.8. An ideal can be linked with more than one ideal. As an example,

let R be local and z,y,z be an M-regular sequence. Then, Rz is geometrically
linked with Ry and Rz over M.

The following corollary shows that for all ideals b which are geometrically linked
with a over M, cd(a, Hfrade”’b(M)) is constant.

COROLLARY 2.9. Let a be linked over M. Then, for every ideal b which is
geometrically linked with a over M, cd(a, HfmdeMb(M )) is constant. In particular,

1 or — o0, M s relative Cohen-Macaulay
cd(a, HE MO (M) = with respect to a,
cd(a, M) — grade,,; a, otherwise.
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ABSTRACT. Suppose G is a group. The cyclic graph I'cG is a simple graph with vertex set G
and the edge set E(I'c(G)) = {{z,y} | (z,y) <c¢ G}, where (z,y) <c G means that (x,y) is a
cyclic subgroup of G. The normal graph I' yG is anther graph with the same set of vertices and
the edge set E(I'n(G)) = {{=z,y} | (z,y) < G}. In this paper, we establish some properties of
the cyclic and normal graphs defined on the group D2, x Cp, where p is an odd prime.
Keywords: Cyclic graph, Normal graph, Split graph.

AMS Mathematical Subject Classification [2010]: 50B10, 05C07, 05C50.

1. Introduction

Throughout this paper, the word simple graph used for an undirected graph with no
loops or multiple edges. Let I' be such a graph. We will denote by V(I') and E(I'),
the set of vertices and edges of I', respectively. The degree of a vertex v € V(I') is
denoted by deg(v), and it well-known that deg(v) = |N(v)|. The degree sequence
of a graph with vertices vy, ..., v, is the sequence d = (deg(v1), . ..,deg(v,)). Every
graph with degree sequence d is called a realization of d. A degree sequence is
uni-graphic if all of its realizations are isomorphic. It is usual to write the degree
sequence of a graph I' as

ny ng e mg
0= (it sty at) )

where n;’s are denoted different degrees and p(n;)’s are multiplicities of these ver-
tices. The order of the largest clique in I' is its clique number denoted by C'N(T).

A locally cyclic group is a group in which every finitely generated subgroup
is cyclic. It is easy to see that a group is locally cyclic if and only if every pair
of elements in the group generates a cyclic subgroup. Also, every finite locally
cyclic group is cyclic. Let G be a group. The cyclicizer of an element x of G,
denoted Cycq(x), is defined as Cycq(z) = {y | (z,y) <. G,y € G}. We refer the
interested readers to consult [5, 6] and references therein for more information on
this topic. The cyclicizer of G is defined by Cyc(G) = (), Cycg(x) which is a
normal subgroup of group G [2, 4, 5, 6].

Suppose G is a group. The cyclic graph I'cG is a simple graph with vertex set
G and the edge set E(I'c(G)) = {{z,y} | (z,y) <c¢ G}, where (z,y) <¢ G means
that (x,y) is a cyclic subgroup of G. The normal graph I'yG is anther graph with
the same set of vertices and the edge set E(I'n(G)) = {{z,y} | (z,y) I G}.

*Speaker
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A graph G is said to be split graph if its vertices can be partitioned into a clique
and an independent set.

The present authors [1], computed the number of cyclic and normal subgroups
of the group Ds, x C,, where p is prime and p { n, and presented the structure
of the subgroups. If p { n, then (a'), (a'b), (a’b,c) and (a’,c), 1 < i < n, are all
cyclic subgroups of the group and the number of these subgroups is 2(7(n) + n). If
p | n, then (a'), (a'b), (a'b,c), 1 < i < n, and (a*,c), when i | % and (a'¢’), when
i | %,1 < j < p—1 are all cyclic subgroups of the group D,, x C,. The normal
subgroups are given by (a'), (a’, c), when i | n, {a',a’b), (a’, a’b, c), when 1 < j < i.

2. Main Results

For n > 3, the dihedral group D,, is an important example of finite groups. As is
well known, the direct product of two finite groups Ds,, and C,, is defined by

Dy, x Cp = {a,b,cla” =b* = = e, bab=a"',[a,c] = [b,c] = e).

PROPOSITION 2.1. Let n = 2" [[;_pi" be an integer and p 1 n. Then the cycli-

(2

cizer Cyc(x) of x in the group Ds,, x C, is given by the following:

oy [ 1<k <p,
T {a'b*} 1<k <p.

& 1<d<p,
albc? 1<d<p-1,

It follows from [3, Proposition 5] that for any group G, degr (z) = |Cycq(z)—1],
where z € G.

THEOREM 2.2. The following are hold:
1) deg(a’) =pn—1 forall 1<i<n.
2) deg(a'd) =2p—1 forall 1 <i<n.
3) deg(c®) =2np —1 forall 1<k <p.
4) deg(a‘c®) =np—1 forall 1<k <p.
5) deg(a’bc®) =2p—1 forall 1<k <p.
PROPOSITION 2.3. Let n = 2" [[_, pi"* be a positive integer. The vertex degree
sequences of the cyclic graph of the groups Day, and Day, x C, is given by the following:

d(T¢ Do) d(I'cDay, x Cp)
1 n—1 2n-1 2np—1 pn—1 2p—1
n n—1 1 P p(n—1) pn
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COROLLARY 2.4. Letn > 3. Then

megr if G= D,
[E(LeG)| =
)2 f G2 Dy, x G,
For example
G D10 X Cg
I'c(G)

d(PC(G)> (239 1;1 155)
[E(Le(G))] 390

COROLLARY 2.5. Let I'c be the cyclic graph of the group Ds,, x C,. The following
are holds:

1) ¢ is not bipartite.
2) ¢ is not Eulerian.
3) I'¢ is not Hamiltonian.
4) T'¢ is a split graph.

We are now ready to present the normal graph. Let G be a group. The normalizer
of an element = of G, Norg(z), defined as Norg(z) = {y|(z,y) < G}.

PROPOSITION 2.6. Let n = 2" [[;_p{* be an integer and p t n. The set of
neighborhood of wvertices of normal graph of the group Ds, x C, are given by the
following:

. Vy € Dan} peti (p(n) + ¢(3))
1) N iy | {ulvy e Do} prti 2
) Norp,, (a’) { {{a’'}} peli (n—(p(n)+ ¢
; a’ 4dps 11, Vs
2) Norp,, (a'b) = { }aﬂilb} ps f :
. Yy € Do, x C,} peti ple(n) + (%))
3 N X ick — {yl . p . 2 n
) Norocylo'e) = { (ST S0 cicyy 010 oo Ve
; {a? 4} 1<d<p,dp1i,Vs,
4) Norp,, xc,(a'bc*) = { {a7be™} 1< d<p.

))-

|3

THEOREM 2.7. The following are hold:

i 2np_1 Ds ia
Y deare) = { S0 1
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2) deg(a’bc®) =2p(n — Y7, O(a??)) — 1 for all 1<i<n.
3) deg(c®) =np—1 forall 1<k<p.

PROPOSITION 2.8. Let n = 2" [[]_, pi"* be positive integer. The degree sequence
of the normal graph of the group Da, and Ds, x C, are given by the following:

1) If 2t n, then

d('n(Dan)) d(Un (Do x Cy))
(2(,0(71) 2n—1 mn-1 ) <2p<p(n) 2np — 1 np —1 )
n_ e(n) n—epn) pn_ pe(n)  p(n—p(n))

2) If 2 | n, then

d(U'n (D2n)) d(Tn (Dan X Cp))
(2(w(n) +¢(%)) 2n—1 n—1 > <2p(so(n) +¢(%)) 2np — 1 np—1 >
n e(n) +9(3) n—(pn)+e¢(3)) pn ple(n) +9(5))  pn—(p(n) +¢(3)))

COROLLARY 2.9. The following are holds:
n n)— ’fl2 ~Y
( n(3p( )2 D+ G= D2n7 2 T n,

n(n+3(p(n 2))-1 ~
(n+3(¢( )2+<p(2)) ) G = Dy, 2| n,

E(TN(G))| = .
np(np+3p(@(§)+%0(§))*p) G = Dy, x Cp, 2 | m,
n ) —1)4+n2p2 ~
\ p(3pso()21)+ P G = Dy, x Cp, 24 n.
For example:
G D Dy

I'n

4(r) (4 5 2) (20 29 14) (24 29 14)
3 21 15 10 5 15 12 3

[E(Ty)] 12 330 255

COROLLARY 2.10. Let I'y be the normal graph of the graph Ds, x C,. The
following are hold:
1) Ty is not bipartite.
2) I'y is not Eulerian.
3) I'y is not Hamiltonian.
4) 'y is a split graph.
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ABSTRACT. Let F be a field of any characteristic. Given any associative algebra A over F,
one can render it into a Lie algebra by defining a new product, the Lie product, for any two
elements a and b in A by means of [a, b] = ab— ba, where ab is the associative product in A. It is
natural to except that the Lie algebra so obtained has a structure which is closely connected with
the associative structure of A. In this paper, we study the relation between simple associative
algebras and their related finitary Special Linear Lie algebras.

Keywords: Associated Algebra, Lie Algebra .
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1. Introduction

Throughout this paper, unless otherwise stated, we denote by F, V, V* II, A and
L to be a field (algebraically closed) of characteristic p > 0, a vector space over
F, a dual space of V over F, a total subspace (See Definition 4.1 for more details)
of V over F, an associative algebra over F and a Lie algebra over F. The study of
the structure of Lie algebras of simple rings were initiated in 1954 by the American
mathematician I. N. Herstein in his papers [8] and [9]. Recall that an associative
algebra A over a field F gives raise to become a Lie algebra A(™) under the Lie
commutator

(1) [z,y] = xy —yx forall x,y€ A,

where zy is the usual multiplication in A. Put A® = A) and A®) = [AG=D AG1)]
(i > 1). Then L = AW, for some i > 0, is a Lie algebra. In several papers (see
for example [10, 11, 12, 13] and [14]) from 1955 to 1975 Herstein studied Jordan
and Lie structure of simple rings. A revision for Herstein’s Lie theory was done by
Martindale [17] in 1986. They examine the Lie ideals and the Lie subalgebras of
simple associative rings. Despite the fact that simple Lie algebras have no ideals, the
American mathematician Georgia Benkart [6] showed that all these Lie algebras have
non-trivial inner ideals. In 1976, Benkart defined the inner ideal as a subspace B of
L satisfies the property [B,[B, L]] € B. In 1977, Benkart highlighted the relation
between inner ideals and ad-nilpotent elements of Lie algebras [7]. Thus, a funda-
mental role in classifying Lie algebras are inner ideals because certain restrictions
on the ad-nilpotent elements imply a criterion for distinguishing the non-classical
from the classical simple Lie algebras in positive characteristic. In 2008, Fernndez
Lpez, Garcia, and Gmez Lozano [16] proved that inner ideals have role similar to
that of one-sided ideals in associative algebras and can be used to improve Artinian
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structure theory for Lie algebras. In this paper, the structure of Lie algebras that
obtained from the associative ones are studied. We start with some preliminaries
on the second section. Section 3 is devoted to study the Lie algebras that come
from the finite dimensional simple associative algebras. Section 4 consists of the
infinite dimensional case where the finitary general and special linear Lie algebra
are considered together with their inner ideals.

2. Preliminaries

Recall that all linear transformations of V' form the general linear Lie algebra gl(V)
under the commutator defined by [z, y] = xy—yz for all z,y € gl(V'). As an example
of the Lie subalgebra and Lie ideal of gl(V') is the special linear Lie algebra sl(V'),
which defined as follows: sl(V) = [gl(V'), gl(V)]. Recall that the linear transforma-
tion x € gl(V) is said to be finitary if dim(xV) < oo [1]. The finitary general linear
algebra is the Lie ideal fgl(V') of gl(V') consisting of all the finitary transformations
of V, that is,
fgl(V) == {z € gl(V) | dim(zV') < o0}.

DEFINITION 2.1. A Lie algebra L is called finitary if it is isomorphic to a subal-
gebra of fgl(V).

We denote by fsl(V') to be the finitary special linear Lie algebra, which is defined
to be the set of all zero trace finitary linear transformations of V. Note that fsl(V) =
[fgl(V), fgl(V)]. Baranov and Strada [4] classify the irreducible finitary Lie algebras.
They proved the following results.

THEOREM 2.2. [4] Let L be an infinite dimensional finitary simple Lie algebra
over F. Suppose that p = 2,3. Then L is isomorphic to either fsl(V,1II), or fso(V, 1),
or fsp(V, 1), where ¢ and ¥ are nondegenerate symmetric and skew-symmetric bi-
linear forms on V.

DEFINITION 2.3. [3] Let B be a subspace of L. Then B is called
1) inner ideal if [B, [B, L]] C B.
2) abelian inner ideal if B is inner ideal with [B, B] = 0.
3) Jordan-Lie inner ideal if B is inner ideal of L = A® such that B% = 0.

We have the following well-known results.

LEMMA 2.4. Let M be a subalgebra of L, P be an ideal of L and B be an inner
ideal of L. Then
1) BN M is inner ideal.
2) (B+ P)/P is inner ideal.

In [2], Baranov, Mudrov and Shlaka showed that if A is left Artinian ring, then
every minimal non-nilpotent left ideal I of A can be written as I = Ae for some
idempotent e € I. The following results summarize relation between inner ideals
and idempotents.

LEMMA 2.5. [3] Let A be a ring with centre Z,. Let e and f be idempotents in
A such that fe =0. Then
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1) GAf ﬂ ZA = 0

2) B = eAfﬂA(k is an inner ideal of A®) for all k > 0;

3) eAf is an inner ideal of A) and of [A, Al;

4) There is an idempotent g in A satisfying eg = ge = 0 such that eAf = eAg.

3. The Lie Structure of the Finite Dimensional Simple Associative
Algebras

We denote by M, (F) and sl,,(F) = [M,(F), M, (IF)] the associative algebra consisting
of all n x n-matrices and its Lie subalgebra which consists of all zero trace matrices
of M, (), respectively. Recall that a perfect Lie algebra is a Lie algebra L with the
property [L, L] = L.

DEFINITION 3.1. [3] A perfect Lie algebra L is call ed quasi-simple if L/Z}, is
simple.

PROPOSITION 3.2. Suppose that A is simple and finite dimensional and p # 2.
Then AW is a quasi-simple Lie algebra. In particular, A™ = AD for all n =
2,3,...,00

PROOF. Since A is simple and F is algebraically closed, A = M, (F) for some
n. If n =1, then [A, A] = 0. Suppose that n > 2. Then [A, A] = s[,,(F), so it is
a perfect Lie algebra. It remains to show that A®/Z(AM is simple. We need to
consider two cases depending on p. Suppose f irst that p = 0, then [A, A] = sl (F)
is simple Lie algebra, and Zy,w = 0, so sl,(F)/Zs, @) is Slmple Suppose now
that p > 0. Then either p divides n or not. If p does not divide n, then this is
similar to the case when p = 0 above. Suppose that p divides n, then sl(F) is not
simple because Zg, @) C sl,(F), so s0,(IF)/Zs, @) is simple. Therefore, [A, A]/Z4 4
is simple, as required. ([l

THEOREM 3.3. Suppose that A is simple ring of dimensional more than 4 over
its centre Z 4 and of characteristic # 2.

1) [12] for any Lie ideal U of A we have U 2 AW or U C Zy.
2) [12] AW /Z 0 is a simple Lie ring.
) A 1) is perfect.
) AW is quasi simple.
) [fA is Artinian of characteristic # 3, then
a) [6] If B is an inner ideal of AW /ZA(l), then B = eAf, where e and f
are idempotents in A such that fe = 0.
b) If B is an inner ideal of AV /Z 1), then B = eAf, where e and f are
idempotents in A such that fe =ef = 0.
¢) If B is a Jordan-Lie inner ideal of AV, then B = eAf, where e and f
are idempotents in A with ef = fe =0.

3
4
3

PROOF. Part (1.) and part (2.) are proved in [12, Theorems 2 and 4].
3. We have [AM, AM] € AM is an ideal of AM. Since Z4 does not contains
AD by (1.), AW C [AD, ADW]. Therefore, AN = [AD), AD] or AW is perfect.
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4. We have Z,0) = Z4NAW. By (2.), AV/Z,q) is a simple Lie ring. Since
AW is perfect (by (3.)), we get that AM) is quasi simple.

5. Part (a) is proved in [5, Theorem 5|. Part (b) follows from Lemma 2.5 (4).

(c) Let B be the image of B in A)/Z,u). Then by Lemma 2.4(2), B is an inner
ideal of A /Z,q), so by (5(a)), B = eAf for some idempotents e and f in A with
fe = 0. firstly, we need to show that B C eAf. Let b € B. Then there is x € A
and z € Z, such that b =exf + 2. As B2 =0 and fe =0,

0="0"= (exf +2)(ef +2) =exfz+ zexf + 2> = e(2w2)f + 2°.

Hence, 22 = e(—2z2)f € eAf N Z4s = 0 (Lemma 2.5(1)), so z = 0. Therefore,
b=ecxf € eAf.

Conversely, we need to show that eAf C B. Let eyf € eAf. Then thereis z € Z
such that eyf + z € B. As above, it is easy to show that z = 0. Thus, eyf € B.
Therefore, B = eAf. It remains to show that B = eAf for some idempotents e and
f in A such that ef = fe = 0. Since fe = 0, by Lemma 2.5(4), there exists g in
A with ¢g? = g satisfying the property ge = eg = 0 such that B = eAf = eAg, as
required. 0

The exception is an exception indeed, as in the example below

EXAMPLE 3.4. Suppose that A = My(F) and p = 2. Consider the set of all
matrices

a b
M—{{b a]|a,b€F}.
Then M is Lie ideal, but AV = sly(F) ¢ M and Z, does not contain M.

4. The Lie Structure of the Finitary Special Linear Lie Algebra
Recall that the annihilator of II C V* is the subspace of V' defined by
Ann(Il) ={v eV |av =0, for all a € II}.
DEFINITION 4.1. A subspace II of V* is said to be total if Ann(IT) = 0.

We denote by §(V,1II) to be the algebra over F defined by
S(V.II) ={a € EndV | a(v) = v1(610) + - - - + v, (dnv), v €V},

where n is an integer, vy,...,v, € V and 41, ...,0, € II. The finitary general linear
algebra fgl(V,II) is the algebra §(V,II) over F under the Lie commutator defined as
in (1). The finitary special linear Algebra fsl(V,II) is the algebra of all x € fgl(V/, II)
with tr(z) € [F,F], where tr(z) is the trace of z (see the definition below).

DEFINITION 4.2. If we choose V* instead of I, then we get the algebra §(V, V*)
of all finite rank transformations of V' over F. for each transformation x € §(V,V*),
the trace tr(z) € F of = is defined to be the trace of the finite dimensional subspace
xV over F.

REMARK 4.3. II = V* when the dimension of V' is finite. In this case, we have
ol(V, V") = gL, (F) = My(F) and jsi(V,V*) = sL,(F) = [M,(F), M,(F)], where
dimV =n.
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Every n x n-matrix M, (F) can be extended to an (n + 1) x (n + 1)-matrix
M, +1(F) by placing M, (F) in the upper left hand corner by bordering the last
column and row by zeros. We denote by M (F) the algebra of infinite matrices
with finite numbers of non-zero entries (See [18, Example 2.4] for more details),
that is, M (F) = U2, M, (F). This gives the embedding

(2) 5lo(F) = sl3(F) — ... = sl,(F) —» ...

The stable special linear Lie algebra sl (F) is the union of the algebras in (2). Note
that sl (F) is of countable dimensional. if F = C, then one can construct the
finitary special linear Lie algebra as follows: sl (F) = {X € M (F) | tr(X) = 0}.
Suppose that the dimension of V' is countable and F = {ey, es,...} is a basis of V.
Let II be a subspace of V* which is the span of the the dual basis E* = {e},e3,...}.
Then we have the following result.

PROPOSITION 4.4. [1, Proposition 6.2] fsl(V,II) = sl (F) if and only if §s{(V,II)
has a countable dimension.

DEFINITION 4.5. [15] An inner ideal B of L is called principal if B = ad?(L) for
some x € B, where ad, is the adjoint mapping defined by ad,(y) = [z, y].

Suppose that V' (resp. W) is a left (resp. right) vector space over F and there
exists a non-degenerate bilinear form ¢ : V. x W — F. Then V = (V,W,4) is
said to be a pair of dual vector spaces [15]. Note that from every vector space V'
we can construct a canonical pair (V,V* 1) for some non-degenerate bilinear form

YV x V* = F defined by ¥ (v, ) = a(v) for all v € V and a € V*. Let
£(V) = {a € End(V) | ¢(av,w) = ¥(v,a”w), a¥ € End(V*),}

be the algebra over F consisting of all linear transformations a : V' — V that satisfies
the property ¥ (av, w) = ¥(v,a”w) for all v € V and w € W, where a# : W — W
is a unique transformation on W that satisfies the property.

REMARK 4.6. Note that a” is not necessarily be existed for all linear transfor-
mations a : V' — V. However, if we consider the canonical pair (V,V* 1), then by
using the relation a*a = aa for all @ € V*, we can find o € End(V*) for every

a € End(V).
We denote by f(V') the ideal of £(V') of all finitary transformations on V.

DEFINITION 4.7. Let V = (V, W, ) be a pair of dual spaces and let X C V" and
Y C W be two subspaces. Then Y*X = span{y*z | x € X, y € Y}, where y*z is
the linear transformation that defined as follows y*z(v) = (v, y)x for all v € V.

Note that every transformation a € F(V') can be written as a = y*x for some
rank one transformation.

DEFINITION 4.8. Let V = (V, W, 1) be a pair of dual spaces. Then gl(V)=£(V)
is the general linear algebra, fgl(V') = §(V) is the finitary general linear algebra and
sl(V) = [fgl(V), fgl(V)] is the finitary special linear algebra.
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PROPOSITION 4.9. [15] Suppose that V' is infinite dimensional. if p = 0, then
fsl(V') is a finitary simple algebra.

THEOREM 4.10. Let V = (V,W,1) be a pair of dual spaces over A, where A 1is
a division algebra. Suppose that dimV > 1. Let V}, CV and W, C W are subspaces
with Y(Vi,Wy) = 0. Then
1) [15] WVy C gl(V) is inner ideal of gl(V).
2) [15] WiV C §sl(V) is inner ideal of fsl(V').
3) [15] WiV C §sl(V) is principal of §sl(V') if and only if V' and W are finite
dimensional and dimV = dimW .
4) if B C {sl(V) is inner ideal, then the following are equivalents
a) [15] B=¢eF(V)f for somee, f € F(V) withe* = e, f2 = f and fe = 0.
b) [15] B = W5V;, for some subspaces Vo CV and Wy C W with 1 (Va, W)
=0.
c) B=¢e§(V)f for some orthogonal idempotents in F(V').
5) Suppose that A is finite dimensional and central over F with p = 0. Then
a) [15] if B C fsl(V') is inner ideal, then B = W3V, for some subspaces
Vo CV and Wy €W with 1p(Va, W) = 0.
b) Every inner ideal of §s\(V') is Jordan-Lie.
c) Every inner ideal of §sl(V') is abelian.

PRrROOF. Parts (1.), (2.) and (3.) are proved in [15].
4) (a) <= (c) This is proved in [15].
(b) = (a) This is obvious.
(a) = (b) Let ¢ = ef — f € F(V). Then ¢*> = g, ge = 0; eg = 0,
gf = g and fg = f. Thus, ¢ is idempotent with eg = ge = 0. Since
eS(V)f = e§(V)fg C e3(V)g and e§(V)g = e§(V)gf C e§(V)f, we get
that eF(V)f = e§(V)g, as required.
5. Parts (a) and (d) are proved in [15].
(b) Let B C fsl(V') be inner ideal. By (a), B = WV, for some subspaces
Vo CV and Wy C W with ¢(V,, Ws) = 0. Hence, by (4.), B = eF(V)f
for some idempotents e and f in F(V') with fe = 0. It remains show that
B? =0. Let b,c € B=¢eF(V)f. Then there exist z,y € (V) such that
b=exf and ¢ = eyf. Since bc = (exf)(eyf) = ex(fe)yf = exOyf =0,
B? = 0. Therefore, B is Jordan-Lie, as required.
(c) Let B C fs[(V) be inner ideal. Then by (b), B is Jordan-Lie, so B* = 0.
Thus, [B, B] C B* = 0. Therefore, B is abelian.

O
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ABSTRACT. A clutter C with vertex set X is an antichain of 2% such that X = UC. For any
clutter C, we consider the independence complex of C whose faces are independent sets in C. In
this paper, we introduce some methods to obtain clutters C’ containing a given clutter C as an
induced subclutter such that the independence complex of C’ is shellable. Consequently, for a
given squarefree monomial ideal I C S = K[z1,...,zn], we obtain a squarefree monomial ideal
J D I in an extension ring S’ of S such that the ring S’/J is Cohen-Macaulay.
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complex.

AMS Mathematical Subject Classification [2010]: 05E40, 05E45.

1. Introduction

Shellable simplicial complexes play an important role in both combinatorics and
commutative algebra. In combinatorial setting, the notion of shellebility gives rise
to an inductive proof for the Euler-Poincaré formula in any dimension. If f; denotes
the number of i-faces of a d-dimensional polytope (with f_; = f; = 1), the Euler-
Poincaré formula states that .

S (-1ifi=1.

i=—1
Earlier inductive proofs” of the above formula were proposed, notably a proof by
Schlafli in 1852, but it was later observed that all these proofs assume that the
boundary of every polytope can be built up inductively in a nice way, what is
called shellability. A striking application of shellability of polytopes was made by
McMullen in 1970, who gave the first proof of the so-called “upper bound theorem”
for polytopes [3].

In algebraic setting, as it is quoted in Stanley’s outstanding book, “shellability is
a simple but powerful tool for proving the Cohen-Macaulay property, and almost all
Cohen-Macaulay complexes arising ‘in nature’ turn out to be shellable. Moreover, a
number of invariants associated with Cohen-Macaulay complexes can be described
more explicitly or computed more easily in the shellable case” (see [4]). Indeed, the
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Stanley-Reisner ring of a pure shellable simplicial complex turns out to be Cohen-
Macaulay. Moreover, the Stanley-Reisner ideal of Alexander dual of a shellable
simplicial complex has linear quotients and hence linear resolution.

From geometric point of view, shellable complexes are bouquets of spheres [1].
Indeed, if A is shellable, then A is homotopic equivalent to wedge some of some
spheres, namely

A Sdim Fj.
Fj

In this paper, we introduce some combinatorial methods to transform an arbi-
trary clutter C to a clutter C' 2 C (by adding some points and circuits) such that
the independence complex of the new clutter C’ is shellable, generalizing the case
introduced by Villarreal [6]. Our results also generalize the result of Cook and Nagel
in [2] who show that the graph obtained by adding a vertex to each clique partition
of G is Cohen-Macaulay.

First, we recall some combinatorial tools and their relations to commutative
algebra.

1.1. Simplicial Complexes. A simplicial complex Aonaset V = {vy,...,v,}
of vertices is a collection of subsets of V' such that {v;} € A for all i and, F € A
implies that all subsets of F' are also in A. The elements of A are called faces and
the maximal faces under inclusion are called facets of A. We denote by F(A) the
set of facets of A. The dimension of a face F is dim F' = |F| — 1, where |F| denotes
the cardinality of F'. A simplicial complex is called pure if all its facets have the
same dimension. The dimension of A, is defined as

dim(A) = max{dim F': F € A}.

Given a simplicial complex A on the vertex set {vy,...,v,}. For F C {vy,...,v,},
let xp = [[,,cp ¥i- The non-face ideal or the Stanley-Reisner ideal of A, denoted
by Ia, is an ideal of S generated by square-free monomials xz, where F' & A.

DEFINITION 1.1 (Shellable simplicial complexes). A simplicial complex A is
called shellable if there is a total order of the facets of A, say Fi,..., F}, such that
(Fy, ..., F;i_1)N(F;) is generated by a set of maximal proper faces of F; for 2 < i < t.

1.2. Clutters and their Associated Ideals. In this section, we recall some
definitions about clutters and their associated ideals in a polynomial ring.

DEFINITION 1.2 (Clutter). A clutter C with vertex set X is an antichain of 2%
such that X = UC. The elements of C are called circuits of C. A d-circuit is a circuit
consisting of exactly d vertices, and a clutter is called d-uniform, if every circuit has
d vertices.

For a non-empty clutter C on the vertex set [n|, we define the ideal I (C) to be
IC)=(xr: TEC),
and we set [(@) = 0. The ideal I (C) is called the circuit ideal of C.
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Let n, d be positive integers and let V' be a set consisting n elements. For n > d,
let
Coa={FCV: |F|=d}.
This clutter is called the complete d-uniform clutter on V' with n vertices.
The complement C of a d-uniform clutter C with vertex set [n] is defined as

C=Coa\C={FC|n]: |F|=d, F¢C}.

Let C be a clutter on the vertex set [n] and let A¢ be the simplicial complex on
[n] with Ia, = I (C). The simplicial complex A¢ is called the independence complex
of C and a face F' € A¢ is called an independent set in C. The clutter C is said
to be shellable (resp. Cohen-Macaulay) if A¢ is shellable (resp. K[zy,...,x,]/I(C)
is Cohen-Macaulay). If C is a d-uniform clutter, then the simplicial complex A(C)
whose Stanley-Reisner ideal is I(C) is called the clique complez of C and a face
F e A(C) is called a cligue in C. 1t is easily seen that F' C [n] is a clique in C if and
only if either |F| < d or else all d-subsets of F' belongs to C.

1.3. Hybrid Clutters. Let C be a d-uniform clutter, and Ay, ..., Ay be a clique

partition of V(C). Let the non-null hypergraphs By, ..., By be such that C, By, ..., By

are pairwise disjoint. Define the d-uniform clutter Cﬁi:j:::i@ as follows:

0
Chd =cul{FcAauv(B): |Fl=dand FNV(B) € B;}.
=1

.....

the clique partition Ay,..., Ay.
2. Main Results

The main aim of our work is to generate several shellable simplicial complexes from
a given clutter. Indeed, for a given clutter C, we apply some operation on C to
obtain a clutter C’ such that the simplicial complex A¢s is shellable.

DEFINITION 2.1. For a hypergraph H of rank r, let H* be the i-uniform spanning
subhypergraph of H including all edges of size i, for ¢ = 1,...,r. The hypergraph
H is said to have property P if it satisfies the following conditions:

a) Any G in F(Api) is contained properly in some G’ in F(Agi+1), for i =
1,...,r, and
b) Any G’ in F(Api+1) contains properly some G in F(Ayi), fori=1,...,r.

THEOREM 2.2. Let C be a d-uniform clutter, Ay, ..., Ay be a clique partition of
C, and let By, ..., By be hypergraphs of ranks at least d — 1 satisfying property P. If

i) dim(Ag) = Y20, dim(Age) — 6 — 1,
ii) Acr is pure if and only if Ags is pure, for all d —|A;| < s < d, and
dimABf —dimAp: =1 — s,
forall s <t <d, and
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iii) C’ is shellable if and only if Bt is shellable for alli =1,...,60 and d— |A;| <
t <d.

EXAMPLE 2.3. Let B = ([n])""Y \ D (1 < r < n), where D is an r-uniform
clutter. It is evident that B satisfies the property P. If A(D) = Ag- is shellable,
then Ag: is shellable for all 1 <1 <.

COROLLARY 2.4. Let C be a d-uniform clutter, Ay, ..., Ay be a clique partition
of C, and let By, ..., By be disjoint simplexes of dimensions at least d — 2. If C' =
i) Acr is pure shellable of dimension (d —1)0 — 1, and
ii) the ring K[V (C")]/1(C") is Cohen-Macaulay of dimension (d — 1)8.
COROLLARY 2.5. Let K be a field.

i) Let A a simplicial complex. Associated to ideal In C Klxq,. .., x,], we define
the ideal

],<A) = <IA,ZE1Z/1, T2Yo, .- 7xnyn> - K[I’l, o Ty Y1,y - - 7yn]a
and S(A) it’s Stanley-Reisner complex. Then the simplicial complex S(A)
is shellable [5, Proposition 5.4.10).

ii) Let m be a clique vertex-partition of G. Then Agr is Cohen-Macaulay [2,
Corollary 3.5].

DEFINITION 2.6. Let C be a clutter and U be an induced subclutter of C. Then U
is independently embedded in C if XUF € F(Ac¢) for F C V(U)and X C V(C)\V(U)
implies that ' € F(A¢y,).

THEOREM 2.7. Let C be a clutter with vertex set UUV and {Cy,}uev be a family
of pairwise disjoint non-empty clutters. Let (C,{Cy}ucv) be the clutter obtained from
C as follows:

(€ {Cuuev) =CU | J{eU{u}: ecCu}.
uelU
= (C,{Cu}uecv) and A" := Acr, then
) din() = 5,0y V(G| + dim(Ac, ),
ii) A" is pure if and only if |Cu,| = 1 for all w € U, Ag), is pure, and Cly is
independently embedded in C,
iii) C' is shellable if and only ifC]V and C, are shellable for all u € U.

COROLLARY 2.8. Let C be a clutter on [n| and C4,...,C, be non-empty sets
such that V(C),Ch, ..., C, are pairwise disjoint. Let

C':=CU{C;U{i}: i€n]}.
Then Acr is pure shellable simplicial complex, hence Cohen-Macaulay.

THEOREM 2.9. Let C be a clutter with vertex set UUV and {Cy,}uer be a family
of pairwise disjoint non-empty clutters. Let (C,{Cy}ucr)® be the clutter obtained
from C as follows:

e

(€, {Culucr) =Cu | Cuu | J{{u}} xC,

uelU uelU
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where C == min{e \z: z €e, e €C,}, forallue U. IfC" := (C,{Cyu}uecv)" and
A= Ac/, then
i) dim(A) = Yy [V(C)] + dim(Ac, ),
ii) A" is pure if and only if |Cy| = 1 for all w € U, Ag,, is pure, and Cly is
independently embedded in C,
iii) C" is shellable if and only if C|v, C,, and C; are shellable for all u € U.
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elements in rings and Banach algebras are investigated and it is completely determined when a
2 X 2 matrix over local rings has P-Hirano inverse.
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1. Introduction

Throughout this paper, R is an associative ring with an identity and A denotes a
Banach algebra. The commutant of a € R is defined by comm(a) = {x € R;za =
ar}. The double commutant of a € R is defined by comm?(a) = {x € Ryazy =
yx for all y € comm(a)}. We use N(R) to denote the set of all nilpotent elements
in R. N stands for the set of all natural numbers, U(R) denotes the set of all
invertible elements in R and GLs(R) is the group of 2 x 2 invertible matrices over
R.

The study of generalized inverses of elements in rings and Banach algebras has a
rich history. Let X € M, (C), where M, (C) denotes the Banach algebra of all n x n
matrices with complex entries. In 1955, R. Penrose [7, Theorem 1], established the
existence and uniqueness of a matrix B € M,(C) satisfying XBX = X;BXB =
B;(XB)T = XB and (BX)T = BX, where XT denotes the conjugate transpose of
X. The matrix B known as the Moore-Penrose inverse, which is a generalized inverse
of the matrix X. With some modifications of the Moore-Penrose inverse, in 1958,
Drazin [4], introduced the concept of a new kind of inverse and called it a pseudo-
inverse, in associative rings and semigroups. If A denotes an algebra, then we call
an element b € A, as a Drazin inverse of a € A if ab = ba; bab = b and a* = a**+'b;
for some nonnegative integer k. The last equation is replaced by a — a*h € N(A);
in some aspects. Several years later Koliha [5], generalized Drazins definition as
follows: Assuming A is a Banach algebra. We call an element b € A, a generalized
Drazin inverse of a if, ab = ba; b = bab and a —aba € QN (A). Here QN (A) is the set
of quasinilpotent elements in A and defined as following. An element a of a ring A is
quasinilpotent if, for every x commuting with a, we have 1 —za € U(A). In a Banach
algebra the preceding definition coincides with the usual definition || (a™) ||+ — 0.
Which is equivalent to A\ — a € U(A) for all complex A # 0. In 2019 Chen and
Sheibani introduced a new subclass of Drazin inverse, called Hirano inverse, [1] wich
is a special case of n-strong Drazin invertible rings (see[6]). With some modification,
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Sheibani called an elemenet a in a ring R to be p-Hirano invertible if there exists
some b € Comm?(a) such that b = bab, (a*> — ab)® € J(R), [8]. The Drazin inverse
and their subclasses are useful tools in rings theory, Banach algebra, differential
equations, cryptography and Marcov chain. In this paper, some properties of p-
Hirano inverse are investigated and it is determined when a 2 x 2 matrix over a local
ring has p-Hirano inverse.

1.1. Some Results on p-Hirano Inverse. In this section we investigate some
elementary results on p-Hirano inverse wich is crucial for our main results.

Following Wang and Chen [9], an element a in R has p-Drazin inverse (that is,
pseudo Drazin inverse) if there exists b € R such that b = bab; b € comm?(a); (a* —
a**1b) € J(R) for some k € N. Here, J(R) denotes the Jacobson radical of the ring
R. The preceding b is unique, if such element exists, and called the p-Drazin inverse
of a and denote b by a”P. Pseudo Drazin inverses in a ring are extensively studied

in both matrix theory and Banach algebra (see [2, 3, 6, 9, 10] and [11]).

DEFINITION 1.1. An element a € R has p-Hirano inverse if there exists b € R
such that bab = b;b € comm?(a); (a®> — ab)* € J(R) for some k € N.

LEMMA 1.2. Let A be a Banach algebra and a € A, then the following are
equivalent:
1) a has p-Hirano inverse.
2) There exists b € comm(a) such that, b = ba®b, (a®> — a®b)* € J(A) for some
ke N.

This lemma leads us to the following theorem.

THEOREM 1.3. Let A be a Banach algebra and a € A, then the following are
equivalent:
1) a has p-Hirano inverse.
2) There exists p* = p € comm(a) such that (a®> — p)* € J(A) for some k € A.
3) There exists b € comm(a) such that b = bab, (a> — ab)* € J(A) for some
k e N.

From the above theorem and Cline’s formula we have the following theorem.

THEOREM 1.4. Let A be a Banach algebra, a,b € A have p-Hirano inverse and
ab = ba. Then ab has p-Hirano inverse.

2. Main Results

The purpose of this section is to determine when a 2 x 2 matrix over a local ring has
p-Hirano inverse. Recal that a ring R is local ring if it has just one maximal right
ideal and a local ring R is called co-bleached if for any j € J(R) and u € U(R),l,,—r;
and [;—r, are injective, where [,, and r; will denote the abelian group endomorphisms
of R given by left or right multiplication by w or j. The following lemma is crucial.

LeEMMA 2.1. [3, Theorem 3.5] Let R be a local ring and A € My(R). Then A
has p-Drazin inverse if and only if
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1) A e GLy(R); or
2) A% € My(J(R)); or

3) A is similar to g g , where lo, — 13,lg — 1o are injective and o €
U(R), B € J(R).
We have the same result for the p-Hirano inverse.

THEOREM 2.2. Let R be a local ring, and let A € My(R). Then A has p-Hirano
wmverse if and only if

1) A% € My(J(R)), or (Iy — A%)? € My(J(R)), or
2) A is similar to (g g , where lo, — 18,13 — 14 are injective and o €
1+ J(R),B € J(R).

THEOREM 2.3. Let R be a cobleached local ring, and let A € My(R). Then A
has p-Hirano inverse if and only if

1) A% € My(J(R)), or (I, — A%)? € My(J(R)), or
(1) 2 ) , where X € J(R),pn € U(R), the equation z* —

xp— X =0 has a root in £1 + J(R) and a root in J(R).
We are ready to prove:

THEOREM 2.4. Let R be a commutative local ring, and let A € My(R). If J(R)
is nil, then A has p-Hirano inverse if and only if

2) A is similar to

1) A has p-Hirano inverse.

2) A is the sum of a tripotent and a nilpotent that commute.

3) A or I, — A% is nilpotent, or x* —tr(A)x +det(A) has a root o € 1+ N(R)
and a root B € N(R).

PROOF. = As in the proof of Theorem 2.3, we may assume

-1 0 A . a 0
(V) v=(55)
for some U € GLo(R), where a,pu € +1 + J(R),B,\ € J(R). Write U™} =
( Z Y ) . It follows from

O Enen-GGy

that
y =z,
ZA+yp = ay,
t = pBs,
SA+tu = pt.

Clearly, t = 8s € J(R). If y or s in J(R), then U is not invertible, a contradiction.
Since R is local, we see that y,s € U(R). If z € J(R), then y = az € J(R), a
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contradiction. This implies that z € U(R). Let § = y~'ay and v = s7'3s Then
b€ 1+ J(R),y € J(R). We compute that

8 — o=y '’y —y layp
=(y " a)(ay — yp)

=(yta)zA
=y~ (az)A
=\

Hence, 62 — 6 — A = 0. Moreover, we check that
v =y =(s'B)(Bs — sp)
=5~ (Bt — tp)
=5"1(s)\)
=\

Therefore the equation 22 — xp — A = 0 has a root § € £1 + J(R) and a root
v € J(R), as desired.

<= Suppose that the equation 2? — zu — A = 0 has a root « € 1 + J(R) and
aroot B € J(R). Then a® = au + X; 32 = Bu + A. Hence,

() ()= 5) (0 5)
(}g):<}5ga)(éf>eamm»

, where o € £1 + J(R) and 8 € J(R).

where

0 AY). . . a 0
Therefore ( 1 ) is similar to ( 0 B
By virtue of Theorem 2.3, we complete the proof. ([l

COROLLARY 2.5. Let R be a commutative local ring, and let A € My(R). Then
A has p-Hirano inverse if and only if

1) A% € My(J(R)), or (I, — A?)* € My(J(R)), or
2) 2? — tr(A)z + det(A) has a root « € £1 + J(R) and a root B € J(R).
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ABSTRACT. We introduce and study the concept of parallel Krull dimension of a module (briefly,
p-Krull dimension) which is Krull-like dimension extension of the concept of DCC on parallel
submodules. Using this concept, we extend some of the basic results for modules with this di-
mension which are almost similar to the basic properties of modules with Krull dimension. In
this article, we show that if an R-module M has finite Goldie dimension, then M has homoge-
neous parallel Krull dimension if and only if it has Krull dimension and these two dimensions
for M coincide.
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1. Introduction

In 1967, the Krull dimension of module M measures its deviation from being Ar-
tinian, was first introduced by Gabriel and Rentschler (for finite ordinals). This
definition was extended to infinite ordinals by Krause in 1970 (see [1, 2, 4]). A
module M is called atomic if M # 0 and for any x,y € M \ {0}, xR and yR have
non-zero isomorphic submodules. Equivalently, every two non-zero submodules of
M are parallel. This modules are different class of modules defined in [3]. It is
easy to see that every uniform module is atomic but the converse is not true in
general. We first introduced and studied the concept of parallel Krull dimension of
an R-module M which is the concept of Krull dimension on the poset of parallel
submodules, say P(M). This dimension is defined to be the deviation of the poset
of the parallel submodule of M. It is well-known that M has Krull dimension if and
only if every submodule of M has Krull dimension. It is natural to ask: if every
parallel submodule of M has parallel Krull dimension, does M have parallel Krull
dimension? In Proposition 2.9, we show that this question has positive answer.
Theorem 2.12; shows the relationship between the existence of Krull dimension and
the existence of homogeneous parallel Krull dimension.

2. Main Results

In this section, we introduce and study the concept of parallel Krull dimension of
an R-module M which is a Krull-like dimension extension of the concept of DCC
over parallel submodules. In other word, it is the deviation of the poset of parallel
submodules to M. We begin the following definition.

DEFINITION 2.1. Two non-zero modules A and B are orthogonal, written as
A L B, if they do not have non-zero isomorphic submodules. Non-zero modules C'
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and D are called parallel, denoted as C' || D, if there does not exist 0 # D; C D with
C' 1 D, and also there does not exist 0 # C; C C such that C; L. D. An equivalent
definition of C' || D is that for any 0 # C; C C, there exist 0 # aR C C; and
0 # bR C D with aR = bR, duality for any 0 # Dy C D, there exist 0 # aR C C,
0 # bR C Dy with aR = bR.

In the following, we recall some basic properties of parallel and orthogonal sub-
modules.

LEMMA 2.2. Let A, B and C are submodules of M as R-module. Then the

following facts hold.
i) If AC M, then A || A.

i) A || B if and only if B || A.
iii) A L B if and only if B L A.
iv) If A<, M, then A || M.
v) IfA|| B and B || C, then A || C.
vi) If C < B < A such that C || A, then B || A.

Next, we give our definition of parallel Krull dimension.

DEFINITION 2.3. Let M be an R-module. The parallel Krull dimension of M
(p.Krull dimension for short), denoted by pk — dim (M) is defined by transfinite
recursion as follows. If M =0, pk — dim (M) = —1. If « is an ordinal number and
pk — dim (M) £ «, then pk — dim (M) = « provided there is no infinite descending
chain of parallel submodules to M such as My 2 M; 2 M, O ... such that pk —
dim(MA’/['—’il) £ « for each i = 1,2,.... In otherwise pk — dim (M) = «, if pk —
dim (M) £ a and for each chain of parallel submodules of M such as My O M; D
My D ... there exists an integer t, such that for each ¢ > ¢, pk — dim (%) < Q.
A ring R has parallel Krull dimension, if it has parallel Krull dimension as an R-
module. It is possible that there is no ordinal « such that pk — dim (M) = a. In

this case, we say M has no p.Krull dimension.

If pk —dim (M) > «, there exists an infinite descending chain My O My O My D

. of parallel submodules to M such that pk — dim ( M]\il) > « for all 4.

DEFINITION 2.4. Let M be an R-module and define P(M) = > M;, where M; C
M, M; || M. By this definition and Lemma 2.2(vi), we conclude that P(M) || M.

LEMMA 2.5. Let M be an R-module. If x € P(M), then xR || M.

PROOF. Assume, to the contrary, that =R |J M. Thus, there exists 0 # K < M
such that zR 1 K. Hence P(M) |f M which is a contradiction. O

Clearly, pk — dim (M) = 0 if and only if M satisfies DCC over its parallel
submodules. Thus, we have the following proposition.

PROPOSITION 2.6. Let M be an R-module. Then the following statements are
equivalent.

i) P(M) is an Artinian module.
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i) Every submodule of M which is parallel to M is Artinian.
iii) M has Dcc over its parallel submodules of M.
iv) pk —dim (M) = 0.

By Lemma 2.2(v), the proof of following fact is clear.

LEMMA 2.7. Let M be an R-module with p.Krull dimension. Then for each
parallel submodule A of M, A has p.Krull dimension and pk — dim (A) < pk —
dim (M).

LEMMA 2.8. Let M be an R-module with p. Krull dimension. Then = has p.Krull
dimension for every parallel submodule A of M and pk — dlm( ) < pk dim (M).

PROOF. Let pk—dlmM—aand :Mf D Aftl D % D ... be a chain
of parallel submodules of M/A. By Lemma 2.2(vi), My 2 My O My D ... is
a chain of parallel submodules of M and so there exists an integer k£ such that
pk — dlm( =) < afor all i > k. Thus, pk — dim () exists and it is less than or

equal a. 0

PROPOSITION 2.9. If every proper parallel submodules of M has parallel krull
dimension, then M has parallel krull dimension and pk — dim (M) = sup{pk —
dim (A): A M}.

ProOF. We note that the parallel submodules of M form a set and hence
sup{pk — dim (A) : A || M} exists, call it a. Give any chain A = Ay 2O A; 2
Ay D ... of parallel submodules of M. There exists ¢ such that pk — dim ( A‘?;) <
pk — dim (A;) < . Therefore, M has parallel Krul dimension equal to a. O

DEFINITION 2.10. An R-module M has homogeneous parallel krull dimension if
every submodule of M has parallel krull dimension.

It is easy to see that if M has homogeneous parallel krull dimension, then so
does & for every A || M.

LEMMA 2.11. Let M be an R-module. If % has homogeneous parallel Krull
dimension for every A || M, then M has parallel krull dimension and pk—dim (M) <
sup{pk — dim (4)]A < M} + 1.

PROOF If Ayg DO A1 D Ay O ... is an infinite chain of parallel submodules of
M, the T and pk — dim (5 +1) exists for all 7. Thus, pk — dim (5 Ai -) <

sup{pk — dlm( ) : A < M}. This shows that M has parallel Krull d1mens1on and
pk — d1m(M)<a+1 where o = sup{pk — dim (%) : A < M} O

The next fact, shows the relationship between the existence of Krull dimension
and the existence of homogeneous parallel Krull dimension.

THEOREM 2.12. Let M be an R-module. Then M has Krull dimension if and
only if it has homogeneous parallel Krull dimension, G — dim (M) < oo and pk —
dim (M) = k — dim (M).
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PRroOOF. If k — dim (M) exists then it is well-known that G — dim (M) is finite
(see [5, Lemma 6.2.6]). By transfinite induction on k& — dim (M) = «, we show that
M has parallel dimension. If &« = 0, we are through. Let o > 0 and the result be true

for every ordinal v < . Let My O My, 2O My D ... be a chain of parallel submodules
of M. As k — dim (M) = «, there exists n € N suCh that & — dim (2= ) =B <a
Mz 1

for every ¢ > n. Hence, by induction hypothesis, has p.Krull dimension and

pk — dlm( 1) < — dim (%= 1) = B < a. Thus M has p.Krull dimension and
pk — dim (M ) <a=k—dm (M ). Now in order to show the equality, it suffices to
prove the converse i.e. k —dim (M) < pk — dim (M). For this purpose, we proceed
by transfinite induction on pk — dim (M) = . If 8 = 0, then M satisfies Dcc
over its parallel submodules of M. Let M = My O M; O My O ... be a chain of
submodules of M. As G —dim (M) < oo, there exists an integer k such that, for any
n >k, M, <. M. Thus, for any n > k, M,, || M. Since pk — dim (M) = 5 =0,
we have My DO M1 O M5 D ... as a chain of parallel submodules of M. Hence
after of finite number will be stoped. That is the chain M = My D M; D My D

is stoped so that k — dim (M) = 0. Now, suppose that § > 0 and the result is
true for every ordinal v < . Let My 2 M; O Ms O ... be a chain of submodules
of M. As G — dim (M) < oo, there exists an integer k such that, for any i > k,
M; <. Mj,. Hence My, O My, 1 O My,2 O ... isa chain of parallel submodules of
M}, by Lemma 2.2(iv). By our assumptlon pk — dim (7% ) < B for all ¢ > k and,

by induction, this shows that k — dim (% ) < pk — dlm( ) < B. Therefore, we
have k — dim (24— =) < Bandsok— dlm( ) < B =pk— lel (M), as desired. [

M4
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ABSTRACT. A commutative ring R is classical if its every non-unit element is zerodivisor. In this
article, it has been shown that the factor rings of C'(X) modulo a closed ideal MA ACX,is
classical if and only if A is an almost P-space completely separated from every disjiont zero-set.
Using this, we conclude that C'(X) modulo the smallest z-ideal containing a member f € C(X)
is classical if and only if the set of its zeros is almost P-space. We also prove that X is a P-space
if and only if for every ideal I C C'(X), the factor ring C(X)/I is classical.
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1. Introduction

The ring of all (resp., bounded) real-valued continuous functions on a Tychonoff
space X is denoted by C(X) (resp., C*(X)). For each f € C(X) the zero-set
Z(f) is the set of zeros of f and its complement coz f, is called the cozero-set of
f. Anideal I in C(X) is called a z-ideal (resp., z°-ideal) if f € I, g € C(X)
and Z(f) C Z(g) (resp., intxZ(f) C intxZ(g)) implies g € I. The intersection
of all maximal ideals containing f € C(X) is My = {g € C(X) : Z(f) C Z(g)}.
In fact, My is the smallest z-ideal containing f. Similarly, the intersection of all
minimal prime ideals of C'(X) containing f is denoted by Pf. It is known that for
every f € C(X), Py ={g € C(X) :intxZ(f) C intxZ(g)} and Py is the smallest
z°-ideal containing f (see [3] for more details on z°-ideals). Every maximal ideal
of C(X) is precisely of the form MP = {f € C(X) : p € clgxZ(f)}, for some
p € BX, where X is the Stone-Cech compactification of X. For A C X, the
intersection of maximal ideals ﬂpe 4 MP is denoted by M 4 and whenever A C X,

M* is replaced by M. Since the closed subset of C(X) endowed with the m-
topology (see [5, 2N]) is of the form M# for some A C 83X, this kind of ideals have
been well knowen as closed ideals. Every maximal ideal M? in C'(X) contains the
ideal O = {f € C(X) : p € intgxclsgxZ(f)}, the intersection of minimal prime
ideal of C'(X) contained in MP (see [5, Theorems 2.11 and 7.13]). For each ideal I
in C(X), we denote by 6(I) the set of all p € 5X such that the maximal ideal M?
contains I. Using 70 in [5], 6(1) = (V¢ clgx Z(f).

If R is a ring and M an R-module, then a nonzero element a € R is called
M -regular if am # 0 for all 0 # m € M. A sequence ay,...,a, of elements of R is
said to be an M-regular sequence of length n if the following statements hold.

i) ay is M-regular, as is M /a; M-regular, ag is M /(a3 M + asM)-regular, etc.
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The maximum length of all M-regular sequences, if exists, is called the depth of M
and it is denoted by depth(M). The depth of a ring R is defined similarly, when
we consider it as an R-module. The concept of the depth is defined and studied in
general rings, modules, and recently in rings of continuous functions (see [1, 2, 4, 7]).
Recall from [6, page 320] that a ring R is classical if its every non-unit element is
a zerodivisor. Thus, a ring R is classical if and only if depth(R) = 0. In the next
section as a main result we investigate conditions on a subspace A C X on which
the factor rings of C'(X)/M# is classical or equivalently depth(C(X)/M*) = 0.
Using this, we find that when the factor rings of C'(X) modulo the smallest z-
ideals (resp., z°-ideals) are classical. In sequel, we denote by r(R) and U(R) the
set of non-zerodivisors (regular elements) and the set of unit elements of a ring R,
respectively.

2. When is the Factor Rings of C'(X) Module a Closed Ideal a Classical
Ring?

If R is a reduced ring (i.e., a commutative ring which does not contain any non-
zero nilpotent), then {Jpc,,inz) £ is the set of all zerodivisors of R. Thus, in this
case, R is classical if and only if UMeMaX(R) M = UPEHHH(R) P. In particular, if T
is a semi prime ideal (i.e., it is an intersection of prime ideals) of a reduced ring,
then the factor ring R/I is also reduced, and thus depth(R/I) = 0 if and only if
Urcvemaxry M = Upeminy > where min(7) is the set of all prime ideals minimal
over I. The following proposition shows that the factor ring of a reduced ring modulo
its every semi prime ideal is classical if and only if R is von Newmann regular.

PROPOSITION 2.1. Let R be a reduced ring. Then R is (von Newmann) regular
if and only if for every semi prime ideal I of R, depth(R/I) = 0.

PRrROOF. Let R be a reduced ring and I be an ideal of R. If R is regular, then
every maximal ideal of R is minimal prime. Thus, every maximal ideal containing [
belongs to min(/), which implies that U;c yrentaxry M € Upemin(ry - The reverse
of the inclusion is clearly true and so depth(R/I) = 0 by the argument preceding
the proposition. Conversely, let N be a maximal ideal of R and () be a minimal
prime ideal contained in N. By the assumption, we have depth(R/Q) = 0. Hence
N C UQgMeMax(R) M = Upemin(Q) P = @ by using the argument preceding the
proposition. Therefore, N = () which means that the maximal ideal IV is a minimal
prime ideal of R. Thus, R is a regular ring. U

In the following, we verify conditions on a space X or on a given ideal M4,
A C BX, to show that when the factor C'(X)/M* is classical. First, we have the
following proposition which shows that the above result is true for every factor ring
of C(X) modulo every arbitrary ideal (not necessarily a semi prime ideal) of C'(X).
Recall that C'(X) is a regular ring if and only if X is a P-space, i.e., every zero-set
of X is open (see [5, 4]] for more equivalent interpretations).

PROPOSITION 2.2. X is a P-space if and only if for every ideal I of C(X),
depth(C'(X)/I) = 0.
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PROOF. Suppose that X is P-space, I is an ideal of C(X) and r + I € X

is a non-unit element. By [2, Lemma 1.5], we have 0(I) NclgxZ(r) # (. On the
other hand, since X is P-space, Z(r) is open-and-closed in X. Therefore, clgx Z(r)
is open in X by [5, 6.9(c)]. Thus, 0(I) NintgxclsxZ(r) # @ which implies that
r+ I is zerodivisor in @ by [2, Lemma 2.2]. Conversely, let f € C(X). Then, by

the assumption, we have depth( Acn(n)((})) = 0. Therefore, by [2, Proposition 4.7], we

conclude that Z(f) is open, i.e., X is a P-space. O

Clearly, C(X)/I is classical if  is an intersection of finitely many maximal ideals
of C(X). To see this, let I = (), M;, where M,’s are maximal ideals of C'(X). Then
{M;}?_, is the set of all maximal ideals containing I and it is not hard to see that
M;’s are also precisely prime ideals of C'(X) minimal over I; in fact, if @) is a prime
ideal of C'(X) containing I = (., M;, then M; C @, for some 1 < j < n and
thus M; = @ which follows that min(I) = {M;}?_,. Now, using the argument
preceding Proposition 2.1, we are done. For an arbitrary intersection of maximal
ideals of C'(X), we have the following theorem which gives conditions on the points
of a subset A of 83X for which depth(C(X)/M#) = 0. First, we need the following
lemma which characterizes the non-zerodivisors of the factor ring C'(X)/M#. Notice
that whenever Y is a subspace of X and a € A CY C X, then a € inty A if and
only if there exists an open set G in X containing a such that G N (Y \ 4) = 0.
Thus, A has empty interior in Y if and only if every neighborhood of x, for each
x € A, intersects Y \ A.

LEMMA 2.3. Let A be a subset of 5X. Then
r(C(X)/M*) = {g+ M*" :inta(ANclgx Z(g)) = 0}.

PROOF. Let g € C(X) and inta(clgxZ(g) N A) = 0. Suppose h € C(X) and
gh € M4, Thus, A C clgxZ(g9) UclgxZ(h) and so A\ clgxZ(g) C clgxZ(h). Since
A\clgxZ(g) = A\ (clgxZ(g) N A) and clgx Z(g) N A has empty interior with respect
to A, we conclude that A\ clgxZ(g) is a dense subset of A. Therefore,

A=cla(A\ clpxZ(g)) Cclx(A\ clgxZ(g)) C clgxZ(h).

Hence h € M which implies that g + M* is a regular element of C(X)/M*.
Conversely, let g € C(X) and inta(ANclgxZ(g)) # 0. Take a € ints(A N
clgxZ(g)). There exists an open set V' in X containing a such that V' N (A4 '\
clgxZ(g)) = 0 by the argument preceding the lemma. On the other hand, there is
a function h € C(X) such that a € X \ clgxZ(h) C V. Hence, A\ clgxZ(g) C
BX \'V C clgxZ(h) which means A C clgxZ(g) UclgxZ(h), i.e., gh € M4 As
h ¢ M*, we conclude that g + M* is a zerodivisor. 0

It was proved that depth(C(X)/M#) < 1. Using this and the following result,
for every A C BX, the depth of the factor ring of C'(X) modulo M# is equal
to 1 if and only if there exists f € C(X) such that clgxA NeclgxZ(f) # 0, but
intclﬂXA<leng N ClﬁXZ(f)) = (Z)
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THEOREM 2.4. Let A be a subset of 3X. Then C(X)/M? is a classical ring if
and only if for every g € C(X), clgx ANclgx Z(g) # 0 implies that inte,, a(clgx AN
clgx Z(g)) # 0.

PROOF. Since C(X)/M# is a reduced ring, by the argument preceding Propo-
sition 2.1 we have depth(C(X)/M#) = 0 if and only if every regular element of
C(X)/M# is unit. As M4 = Msx4 and §(M4) = clgx A, the result follows by
Lemma 2.3 and [2, Lemma 1.5]. O

In [2, Proposition 4.13] we see that a subset A C X is an almost P-space if the
ring C'(X)/Mj, is classical. We generalize it and give an equivalent condition for
C(X)/M4 to be classical.

THEOREM 2.5. Let A be a subset of X, then C(X)/My is a classical ring if and
only if A is an almost P-space which is completely separated from every zero-set
disjoint from it.

PRrROOF. Let C(X)/M, be a classical ring. Then depth(%) = 0. By [2,

Proposition 4.13], we conclude that A is an almost P-space. Now, suppose that
felC(X)and Z(f)NnA=0. Therefore inta(ANZ(f)) = 0 and this implies that

f+ My, is a regular element in <& by [2, Lemma 4.8]. By the assumption, we have
r(%f)) =U (%—X) which 1mphes that f+ My is a unit element in A(f) and so A is

completely separated from Z(f) by [2, Lemma 1.5].

C(X)
My
rated from every zero-set disjoint from it, by [2, Lemma 1.5], we have ANZ(f) # 0.
On the other hand, A is an almost P-space, thus int4(Z(f)NA) # 0. Hence, f+ M4

is a zerodivisor in =+ by [2, Lemma 4.8]. O

Conversely, let f + M4 be a non-unit element in . Since A is completely sepa-

Since every pair of disjoint zero-sets are completely separated and also for every
feC(X), My = My, we have the following corollary.

COROLLARY 2.6. For every f € C(X), the factor ring of C(X)/M; is classical
if and only if Z(f) is an almost P-space.

In the rest of this section we verify the condition on which the ring of fractions
of C(X) modulo the smallest z°-ideals are classical. First, we need the following
lemma.

LEMMA 2.7. Let A be a regular closed subset of X (i.e., A= clxintx A). If A
is an almost P-space, then every point of A is an almost P-point of X.

PROOF. Suppose that there exists a € A, which is not an almost P-point of X.
Then there exists r € r(X) such that a € Z(r) and so @ # Z(r)N A € Z(A). Now, if
¢ € inty A, then c¢ is an almost P-point with respect to intxy A and so it is an almost
P-point in X by [2, Lemma 1.4]. Thus ¢ ¢ Z(r) for r € r(X) and c is an almost
P-point of X. This implies that Z(r) N A C dA. Therefore int,4(Z(r) N A) =0, as
intx A is dense in A, a contradiction. OJ

The following result is a generalization of [2, Corollary 4.16].
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THEOREM 2.8. For every f € C(X), the following statements are equivalent.
i) The ring %ﬁf) is classical.
i) The subspace cly intx Z(f) is an almost P-space completely separated from
every disjoint zero-set.
iii) The subspace cly intx Z(f) is completely separated from every disjoint zero-

set and also its every point is an almost P-point of X.

PROOF. Let A = clyintx Z(f). The equivalence of (i) and (ii) is clear by
Theorem 2.5, as Py = M,. Also, (ii) clearly implies (iii) by using the previous
lemma.

(iii)=-(i). Suppose that (iii) holds and let r + P; be a non-unit element in
C(X)/Py. Since A is completely separated from every zero-set disjoint from it, A
can not be disjoint from Z(r), as r + Py is non-unit (see [2, Lemma 1.5]). Now, if
r € Z(r)Nclxintx Z(f), then x € Z(r) N Z(f). As x is an almost P-point of X by
our hypothesis, intxZ(r) NintxZ(f) # 0. By [2, Lemma 4.13], we conclude that
r+ Py is a zerodivisor and so C(X)/ Py is classical. O
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1. Introduction

Throughout this paper, R will be commutative and Noetherian and will have non-
zero identity elements, and the terminology is, in general, the same as that in [2] and
[7]. Let I be an ideal of R, and let E be a non-zero finitely generated module over R.
We denote by Z the Rees ring Rlu, It] := @,czI1"t"™ of R with respect to I, where ¢
is an indeterminate and u = ¢~!. Also, the graded Rees module Elu, It] :== ®,ezI"FE
over # is denoted by &, which is a finitely generated graded #Z-module. We shall
say that [ is E-proper if E # IFE, and, in this case, we define the F-grade of 1
(written grade (I, E)) to be the maximum length of all E-sequences contained in I.
In [9] Ratliff and Rush studied the interesting ideal,

I=Up (I™ g IM)={z € R: xI" C I"*! for some n > 1},
associated with I. If gradel > 0, then this new ideal has some nice properties.
For instance, for all sufficiently large integers n, I" = I". They also proved the

interesting fact that, for any n > 1, I™ is the eventual stable value of the increasing
sequence,

([n+1 ‘R [) g (In+2 ‘R 12) g ([n+3 ‘R [3) g
In particular, Mirbagheri and Ratliff, in [6, Theorem 3.1] showed that the se-
quences of associated prime ideals

ASSRR/ﬁ and Asst”/I/"vH, n=12 ...,

are increasing and eventually stabilize. In [5], a regular ideal I, i.e., grade I > 0, for
which I = I is called a Ratliff- Rush ideal, and the ideal I is called the Ratliff-Rush

1deal associated with the regular ideal I. For more information about the Ratliff-
Rush ideals, see [4, 5] and [8]. Subsequently, W. Heinzer et al. [3] introduced a
concept analogous to this for modules over a commutative ring. Let us recall the
following definition:

DEFINITION 1.1. (See, Heinzer et al. [4]). Let R be a commutative ring, let F
be an R- module and let I be an ideal of R. The Ratlif-Rush closure of I with
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respect to E denoted by /I\E:, is defined to be the union of (I"*'E :p I™), where n
varies in N; i.e.,

Iz={e € E: I"e C I"*'E for some n}.

If E = R then the definition reduces to that of the usual Ratliff-Rush ideal
associated to I in R (see [9]). Furthermore I is a submodule of E and it is easy to
see that TE C IE - f]; The ideal I is said to be Ratliff-Rush closed with respect
to F if and only if IF = TE:

The main purpose of this paper is to show that the sequence AssgpF /f;f, n =
1,2,..., of associated prime ideals is increasing and eventually stabilizes [10]. This
extends Mirbagheri-Ratliff’s result. Pursuing this point of view further, we will give
a characterization of %(I , E) in terms of the Rees ring and the Rees module of F
with respect to I.

2. Main Results

The main point of this note is to generalize and to provide a short proof of the main
result of Mirbagheri and Ratliff in [6]. The following lemma plays a key role in the
proof of that theorem.

LEMMA 2.1. Let R be a commutative Noetherian ring, I an ideal of R and let
E be a non-zero finitely generated R-module. Suppose that m,n are two natural
numbers such that n > m. Then

—_~—

}gEﬁ:}gElm:]g_m
PROOF. Let e € I}y :p I'™. Then [™e C Ijh = Jpe(I"E i IF) = ["VE . I°

for some natural number s. Hence I™"%e¢ C I"™*E, and so

ec InJrsE ‘B Im+s — In7m+m+sE ‘B Iers g Igfm

Now, we show that ;™™ C fg .5 I™. To do this, it is enough for us to prove that

—_~— —_~—

ﬁ[g’m C E Let e € I;7™ and r € I™. Then, for some large k, [¥e C [""m+FE
and rI¥ C I¥™, Hence

Ifre Cr["™*FE =" ["""E C [FM " = ["TRE,
Therefore re € I"tFE :p IF C }g, as required. O

Now we are prepared to prove the main result of this paper, which is an extension
of Mirbagheri-Ratliff’s result in [6].

THEOREM 2.2. Let R be a commutative Noetherian ring and let E2 be a non-zero
finitely generated R-module. Suppose that I is an ideal of R. Then the sequence
{Assg E/I}}hen, of associated primes, is increasing and eventually constant.

PROOF. Let p € Spec R and p = }E ‘g €, for some e € E. Then, in view of the

Lemma 2.1, f}g = I3 g I, and so p = I5+! iz Te. Since [ is finitely generated, we
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have p = ([/]’z?:1 ‘R Qfor some f € Ie. Therefore p € AssRE/[/g\rl. This shows the
sequence {Assg E/I};}nen I8 increasing.
On the other hand, I% = (I"**E : I*) for some s € N. Then we have
p=[""E:pI°):ge=I1""E g I’e,
and hence p € Assp E/I" ™ E. Consequently,
U Assg E/Tg C U Assp B/I"E.
n>1 k>1

Now the desired result follows from Brodmann’s Theorem [1]. O

DEFINITION 2.3. Let R be a commutative Noetherian ring, E a non-zero finitely
generated R-module, and let I be an ideal of R. Then the eventual constant value
of the sequence Assg E/I%:, n=1,2,..., will be denoted by A*(I, E).

PrRoOPOSITION 2.4. Let R be a commutative Noetherian ring, E a non-zero
finitely generated R-module, and let I be an ideal of R. Then the sequence

{Assg E/I}}“}nzl is monotonically increasing and stable.

PROOF. Let p € Assp }E/[}JLH. Then there is e € @ such that,

p:E“:Re:(@J”:E]):Re:@E:R]e.

Since Te C Ipt, it yields that p € Assg I /172 Now we can process similarly

to the proof of Theorem 2.2 to deduce that the set Assg f]’g/ I is increasing and
eventually constant. O

COROLLARY 2.5. [6, Theorem 3.1] Let R be a commutative Noetherian ring and
I an ideal of R. Then the sequences of associated prime ideals

AssgpR/I" and AssRﬁl/I/’:l, n=12 ...
are increasing and eventually stabilize. Moreover, for all large n

AsspR/I" = AssRﬁ/F“.

We end this paper with a characterization of :47([ , E) in terms of Rees ring of
R and the Rees module of F with respect to I.

THEOREM 2.6. Let R be a commutative Noetherian ring and let 2 be a non-zero
finitely generated R-module. Suppose that I is an E-proper ideal of R such that
grade (I, E') > 0. Then the following statements are equivalent:

i) pe A(I,E). N
ii) There exists a prime ideal q € A*(t"'%,&) such that qN R = p.

PROOF. (i) = (ii). Let p € 2{\;([, E). Then there exists an integer n > 1 such
that p € Assg F/I%. Now, in view of [8, Lemma 2.1], we have

[2=]""E I =I"E,
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for some large integer n and for every integer r > 1. Hence p € Assg E/I"E. Since
I"E =t"& N E, it follows that there is a prime ideal q € Assy, &/t™"& such that
gN R =p. Now, as

(t"R)e =1"V"E 1o t "R,
it is easy to see that q € Assy 5/(25%)(9 Therefore q € :4\;(75*1%, &) such that
g N R = p, as required.
In order to prove the implication (ii) = (i), suppose q satisfies in (ii). Then

by definition q € Assy &/(t7"%#)¢ for large n. Now, in view of [8, Lemma 2.1], we
have o

(t"R)e =t "E o TR =18,
for some large integer n and for every integer » > 1. Whence q € Assy &/t™"&.
Therefore, as

(t"R)e =1"1"E 1o t " R,
it yields that p € Assg E/I"E, and so by using again [8, Lemma 2.1], we have
p € Assg E//I}. Thus p € A*(I, E), as required. O
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1. Introduction

Let G be a group, x € G and « € Aut(G) is an automorphism of G. The autocom-
mutator of z and « is defined as [z,a] = 7'z In 1994, Hegarty [4] consider the
following definition for Z(G), the center of group G,
Z(G)={g9g€ G|g*=gforall a €lInn(G)}.
Also Hegarty introduced L(G), the absolute center of a group G as follows.
L(G)={g € G| g™ =g for all & € Aut(G)}.
It is clear that the subgroup L(G) is characteristic subgroup and L(G) < Z(G).
Schurs theorem states that the derived subgroup of a group is finite whenever the
central factor of the group is finite. Hegarty proved an analogue to Schurs theorem
for the absolute center and the autocommutator subgroup of a group, that is, if G is
a group such that G/L(G) is finite, then (g7'¢g* | g € G,a € Aut(G)) is also finite.
Moreover, Chaboksavar et al. [2] classify all finite groups G whose absolute central
factors are isomorphic to a cyclic group, Z, x Z,, Dg, Qs or a non-abelian group
of order pq for some distinct primes p and ¢. Meng and Guo [7] explore the rela-
tionship between L(G) and the Frattini subgroup ®(G) for a finite group G. Also,
they determine the structure of the absolute center of all finite minimal non-abelian
p-groups.
In this talk, we study L(G) for p-groups of maximal class, where p € {2,3} and all
p-groups of maximal class of order less than p®. As the definition of L(G) shows,
studying L(G) directly depends on the structure of Aut(G).
Throughout, the following notation is used. The terms of the lower and the upper
central series of G are denoted by v;(G) and Z;(G), respectively. The centre of G
is denoted by Z = Z(G). If a is an automorphism of G and x is an element of
G, we write x® for the image of x under a. For a normal subgroup N of G, we
let Aut™(G) denote the group of all automorphisms of G centralizing G/N. Let
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H < G and A < Aut(G). We note that Co(H) = {a € A| h* = h,Vh € H} and
Cu(A)={h € H|h*=h,Va e A}.

2. Main Results

Let G be a p-group of maximal class of order p™ (n > 3), where p is a prime. We
note that if n = 3, then L(G) =1 for p > 2 and L(G) = Z(G) for p = 2. Therefore,
in the rest of the paper we assume that n > 4. Following [5], we define the 2-step
centralizer K; in G to be the centralizer in G of 7;(G)/7;42(G) for 2 < i < n—2
and define P, = P(G) by Py = G, P, = Ky, P, = v(G) for 2 < i < n. The
degree of commutativity [ = [(G) of G is defined to be the maximum integer such
that [P, Pj] < Piijy for all 4,7 > 1 if P, is not abelian and [ = n — 3 if P is
abelian. Take s € G — U:.L;; K;, sy € PL—Pyand s; = [s;_1,8] for 2 <i<n-—1.
It is easily seen that {s,s;} is a generating set for G and P;(G) = (s;,...,8,_1) for
1 <i<n-—1andso Z(G) = P,_1(G) = (s,_1). For the rest of the paper, we
fix the above notation. By [5, Corollary 3.2.7] and [1, Corollary p.59], we have the
following result.

LEMMA 2.1. Let G be a p-group of maximal class of order p".
i) The degree of commutativity of G is positive if and only if the 2-step
centralizers of G are all equal.
ii) If G is metabelian, then G has positive degree of commutativity.

LEMMA 2.2. If G is a p-group of mazimal class of order p*, then Aut,(G) fix
Z(G) elementwise.

PRrROOF. Consider the action of Aut,(G) on Z(G). It is obvious that
Czc)(Aut,(G)) # 1, since Aut,(G) and Z(G) are p-groups. As |Z(G)| = p, we
have Cz(q)(Aut,(G)) = Z(G) which compelets the proof. O

COROLLARY 2.3. Let G be a p-group of mazimal class of order p" and Aut(G)
be a p-group. Then L(G) = Z(G).

COROLLARY 2.4. If G is a 2-group of mazimal class of order 2", then L(G) =
Z(@G).

In what follows, we first find the absolute center for all finite 3-groups of maximal
class and finally we obtain the absolute center for all p-groups of maximal class of
order p”, where 4 <n < 5.

LEMMA 2.5. Let G be a 3-group of mazximal class of order 3" (n > 4), then
L(G)=1.

LEMMA 2.6. Let G be a p-group of mazimal class of order p* (p > 2). Then
L(G) =1.

PROOF. By [6, Lemma 9] we see that Aut(G) is not p-group . Since P, =
Ca(72(@Q)), we have v(G) < Z(Py) < P, which implies that P,/Z(P;) is cyclic and
so P is abelian, as desired. O
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Now for p > 3, Curran [3, Corollary 5] has shown that there is only one group of
order p® whose automorphism group is also a p-group in which (p — 1,3) = 1. The
presentation of this group is as follows.

Go = (a1,a | a¥ = [ay,a]’ = [a1,a,al? = [a1,a,a,a]’ = [a1,a,a,a,a] =1,
a? =la1,a,a,a] = [ay,a,a;]").

We note that Gg is of maximal class. By this observation, we state the following
theorem.

THEOREM 2.7. Let G be a p-group of maximal class of order p®, where p > 3. If
G = Gy, then L(G) = Z(QG) for otherwise L(G) = 1.
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ABSTRACT. In this paper, we introduce and analyze a new LU-factorization technique for square
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1. Introduction

Linear systems of equations play a fundamental role in numerical simulations and
formulization of mathematics and physics problems. Solving these systems is among
the important tasks of linear algebra. Nowadays, certain problems in control theory,
manufacturing systems, telecommunication networks and parallel processing systems
are intimately linked with linear systems over semirings and, as a special case, over
max-plus algebra. Semirings are a generalization of rings and lattices. The algebraic
structure of semirings are similar to rings, but subtraction and division can not
necessarily be defined for them.

In traditional linear algebra, LU decomposition is the matrix form of Gaussian
elimination. Some articles have touched on techniques for LU decomposition over
max-plus algebra (see [3, 5]). It is noteworthy that in [5], using a different approach
and structure for LU decomposition, Tan shows that a square matrix A over a
commutative semiring has an LU-factorization if and only if every leading principle
submatrix of A is invertible. Moreover, Cuninghame-Green proves in [1] that a
square matrix A over the max-plus algebra is invertible if and only if every row and
every column of it contains exactly one nonzero element. This means that from
Tan’s perspective and in his proposed structure in [5], only diagonal matrices are
LU-factorizable in max-plus algebra. We present a new LU —factorization technique
which is more aligned with the version from classical linear algebra. As it turns out,
using this method, one can look for and possibly find LU factors for square matrices
that are not necessarily diagonal. The proposed LU-factorizatin technique in this
paper is a computational solution method. This approach enables us to solve linear
systems applying the proposed LU factors. The lower and upper triangular systems
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are analyzed separately and the combination of these results gives the solutions of
the system AX = b if the LU factors of A exist. This work is at the intersection of
numerical linear algebra, and pure mathematics.

1.1. Definitions and Preliminaries. In this section, we use n to denote the
set {1,2,...,n} for n € N.

DEFINITION 1.1. [2] A semiring (S,+,.,0,1) is an algebraic system consisting
of a nonempty set S with two binary operations, addition and multiplication, such
that the following conditions hold:

1) (S,+) is a commutative monoid with identity element 0;

2) (S,-) is a monoid with identity element 1;

3) Multiplication distributes over addition from either side, that is a(b + ¢) =
ab + ac and (b + ¢)a = ba + ca for all a,b,c € S;

4) The neutral element of S is an absorbing element, that isa-0=0=0"a
for all a € S,

5) 1#0.

A semiring is called commutative if a-b=0b-a for all a,b € S.

This work mainly concerns S = Ryax+ = (RU {—00}, max, +, —00,0), which
is called max- plus algebra. We denote the set of all m x n matrices over S by
men(S) For any A = (aij)vB = (sz) S Man(S)J C = (Cz‘j) € Mnxl<5> and
A € S, we define the matrix operations as follows.

A+ B = (max(a;;, bij)), AC = (rn%fc(aik + cij)), M = (A + a;5).

k=
For convenience, we can denote the scalar multiplication AA by A + A. We also say
A < B if and only if a;; < b;; for every i € m and j € n.

DEFINITION 1.2. [4] Let A € M,(S), S be the max-plus algebra and S,, be the
symmetric group of degree n > 2. The determinant of A, denoted by det(A), is
defined by

det(A) = gé%x(ala(l) + Ag0(2) + -+ F Ano(n))-

Let A € M,(S), b € S™ and X = (z;)"; be an unknown vector over S. Then
the i—th equation of the linear system AX = b is

max(a;s + 21, Go + Ta, . .., Qin + ) = b;.
DEFINITION 1.3. A vector b € S™ is called regular if b; # —oo for any ¢ € n.

DEFINITION 1.4. A solution X* of the system AX = b is called maximal, if
X < X* for any solution X.
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2. Main Results

2.1. LU-Factorization. Let A = (a;;) € M,(S) be an arbitrary matrix. We
say A has an LU-factorization if A = LU, where triangular matrices L and U are
defined as follow:

(1) L={(ly); ly= {

Q5 — Qjj if 1 Z],

—00 otherwise ’

N BT R ANy 2
(2) U= (uy);  wij = { —oo  otherwise
Note that without loss of generality, we can assume that det(A) = aj; + -+ + app,
otherwise, there exists a permutation matrix P, corresponding to o € S,, such that

det(PUA) = (pUA)H + -+ (paA)nn-

THEOREM 2.1. Let A € M,(S) such that det(A) = a1 + -+ + apy and the
matrices L and U be defined by (1) and (2), respectively. Then A = LU if and only
if forany 1 <i,7 <n andi#j,

a;j = max(det(A[{k, i} | {k,j}]) — aw),

where r = min{i, 5} — 1 and A[{k,i} | {k,j}] denotes the 2 x 2 submatriz of A with
rows {k,i} and columns {k,j}.

2.2. L-System. Here, we study the solution of the lower triangular system
LX = b where L € M,(S) and b € S™ is a regular vector. The i—th equation of this
system is

max(ly + o1, lig + 2 + - + by + 24, —00) = b;.

THEOREM 2.2. Let LX = b be a lower triangular system with a reqular vector
b € S™. Then the system LX = b has the mazimal solution X* = (b; — l;;)I, if
lig — b < by — b forany2 <i<nandl <k <i—1. Moreover, the maximal
solution X* is unique if all the inequalities Ly, — i < b; — by are proper.

PROOF. The proof is through induction on i. For i = 2 (k = 1), the second
equation of the system LX = b in the form “max(ly; + x1,l29 + x2) = by” implies
that x9 < by — lgg, since lo; — 11 < by — by and 7 = by — ;. We also show
that the statement is true for i = 3 (k = 1,2). Since the inequalities l3; — 17 <
bs — by and I35 — [ < b3 — by hold, replacing for z1, and x5 in the third equation,
max(lg; +x1, lso+ X2, l33+x3) = b3, yields x3 < by —I33. Suppose that the statements
are true for all s <m—1,ie., 21 =b; —l;; and x; < b; — [, forany 2 <7 < m —1.
Now, let i =m (k= 1,...,m —1). Then Ly — ly. < b; — by, and by the induction
hypothesis, x; < b; —[; for any 2 <7 < m—1. As such, in the m—th equation of the
system we get x,, < b, — l,m- Hence, the system LX = b has the maximal solution
X* = (b; — l)". Clearly, if Ly, — Iy, < b; — b forany 2<i<nand 1<k <i-—1,
then the maximal solution X* is unique. 0
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A descriptive method for solving LX = b. Let z; and b, be the k—th entries
(1 <k < n) of the unknown vector X and the constant vector b, respectively, of the
system LX = D.

e Step 1. From the first row of the system (i = 1), we have z1 = by — ly;.
e Step 2. We now check the feasibility of the next rows, 2 < i < n, for k = 1.
— Case 1. If for some 1, lil —l > bz — bl, then lil 4z =i ‘|‘b1 — 111 > b,
which means the i—th row and therefore the system has no solution and
the process is terminated without yielding any solution.
— Case 2. If for all 7, l;; — l117 < b; — by, then [;; + 21 < b;. In particular
for i = 2, we have ly; + 1 < by and the second row yields xo < by — los.
This takes us to the next step.
e Step 3. We now check the feasibility of the rows, k + 1 < ¢ < n, for each
2 <k <n—1 and exactly in that order.
— Case 1. If for some @, l;;, — g > b; — by, or by, — I, > b; — L, then given
already that xp < by — lxr, we end up with one of the following cases:
« 1) if xp = by — lkx, then [+ > b; which means the i—th row and
therefore the system has no solution and the process is terminated
without yielding any solution,
x i) else if xp < by — Lk, then we set z, < b; — li. In particular
and in order to attain the maximal solution, we can actually set
Ty = Iglel}l{bz — lip}, where I C {k+1,...,n} is the set of all ¢ such

that [;; — [ > b; — by. Next, we replace k with k£ + 1 and repeat
this step as long as k < n—2. If k = n — 1, we end up with
Tp < b, — l,, and the system has solutions, so we stop here.

— Case 2. If for all 4, l; — lx < b; — by, then [ +x, < b;. In particular for
1=k + 1, we have l(k+1)k — lkk S b(k+1) — bk which implies l(k+1)k + X S
lik+ 1)k + be — e < b1y Note that already zy, < by — k. Now the
(k41)—st row of the system, max(l(x+1)1+21, lp+1)2+Z2, - - -, L 1) o1y +
T(k+1)) = De41), 8ives Tikr1) < Dkt1) — l(k+1)(k+1). We should now return
to the beginning of this step as long as k < n — 2. If £k = n — 1, then
Tn < b, — l,, and the system has solutions, so we stop here.

ExXAMPLE 2.3. Consider the following system:

3 —o0 —o0 —oof| [x 6
-5 4 —oo —oof |ma| |2
6 18 -2 —oof 23] |10
1 14 —6 3 Ty 5

It is clear that 1 = 3 and l;; — ;1 < b; — by for any 2 < ¢ < 4. In particular for ¢ = 2,
we have ly1+x1 = by and the second row of the system implies xo < by—log(z2 < —6).
We now apply step 3 for k = 2. It is easy to check l;5 — los > b; — by for ¢ = 3,4.
As such, we consider x5 = min{bz — l32, by — l4o} = —9, because x5 is not necessarily
equal to by — los. Next, we replace x1 and x5, obtained from the previous steps, in
the third row which implies l3; + 21,32 + 2 < b3 and consequently x3 = by — I33.
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We repeat this step for k = 3. The inequality l43 — I35 > by — b3 yields I3 + 23 > by
and therefore the system has no solution.

2.3. U-System. We can rotate an upper triangular matrix and turn it into
a lower triangular matrix through a clockwise 180-degree rotation. As such, the
U-system UX = b becomes an L-system LX' = b" with l;; = um—it1)(n—j+1)
T = T(n—it1) and b; = bp_it1y, for every 1 <i,j <n and j <.

THEOREM 2.4. Let UX = b be an upper triangular system with a regular vector
b € S™. Then the system UX = b has the mazimal solution X* = (b; — uy)i, if
Un—iyk — Ukk < bn—iy —bp for any 1 <i<n-—1andn —i+1<k <n. Moreover,
the mazimal solution X* is unique if all the above inequalities are proper.

ProoFr. We convert the upper triangular system UX = b into a lower triangular
system LX' =1 as explained above and the proof is similar to Theorem 2.2. O

2.4. LU-System.

THEOREM 2.5. Let A € M, (S) has an LU—factorization. Then the system
AX = b has the maximal solution X* = (b; — ay)"y if apw — ape < b; — b and
An—jy — Ay < bgn—jy — by forany2 <i<n, 1 <k<i-1,1<j757<n-1, and
n—j+1<1<n. Moreover, the maximal solution X* is unique if all the above
mequalities are proper.

PRrROOF. Let the matrix A have LU factors. Then the system AX = b may be
rewritten as L(UX) = b. To obtain X, we must first decompose A and then solve
the system LZ = b for Z, where UX = Z. Once Z is found, we solve the system
UX = Z for X. Due to the combination of Theorems 2.2 and 2.4 and defining
matrices L and U, the proof is complete. O

EXAMPLE 2.6. Let A € M,(S). Consider the following system AX = b:

4 1 4 3 ) 3
~1 01 4 | |4
3 78 1 zs |~ |9
5 25 =2 || a 4

Here, det(A) = a3 + agy + ass + ayq1, but there exists a permutation matrix P,
corresponding to the permutation o = (1324) such that P, A has the following LU
factors:

—00 —00 —O00 0 0 —00 —00 —0 5 2 5 —2
—00  —00 0 —0o0 -2 0 —00  —00 —00 7 8 1
Po = 0 —00 —00 —oo |’ L= -1 -6 0 —o0 |’ U= —0c0 —oo 4 3
—0o0 0 —00  —00 -6 -7 -3 0 —00 —o0 —oo 4

We can now use the LU method to solve the system (P,A)X = P,b. Due to
Theorem 2.2, the lower triangular system LZ = P,b has the maximal solution
Z = ((Pyb); — ly)ie; = (4,9,3,4)T. Since the inequalities of Theorem 2.4 hold, the
system UX = Z has the maximal solution X* = (z; —u;;)i; = (—1,2,—1,0)”. The
systems AX = b and (P,A)X = P,b have the same solutions.
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ABSTRACT. A graph G is said to be k-distinguishable if every vertex of the graph can be colored
from a set of k colors such that no non-trivial automorphism fixes every color class. The distin-
guishing number D(G) is the least integer k for which G is k-distinguishable. A list assignment
to G is an assignment L = {L(’l})}vev(g) of lists of labels to the vertices of G. A distinguishing
L-labeling of G is a distinguishing labeling of G where the label of each vertex v comes from L(v).
The list distinguishing number of G, D;(G) is the minimum k such that every list assignment
to G in which |L(v)| = k for all v € V(G) yields a distinguishing L-labeling of G. In this paper,
we study and compute the list-distinguishing number of some families of graphs. We also study
graphs with the distinguishing number equal the list distinguishing number.

Keywords: Distinguishing number, List-distinguishing labeling, List distinguishing
chromatic number.

AMS Mathematical Subject Classification [2010]: 05C15, 05E18.

1. Introduction

Let G = (V, E) be a simple graph. The set of all automorphisms of G, with the
operation of composition of permutations, is a permutation group on V' and is de-
noted by Aut(G). A coloring of G, ¢ : V. — {1,2,...,r}, is r-distinguishing, if no
non-trivial automorphism of G preserves all of the vertex colors. In other words, ¢
is r-distinguishing if for every non-trivial o € Aut(G), there exists z in V' such that
o(z) # ¢(o(x)). The distinguishing number of a graph G is the minimum number
r such that G has a coloring that is r-distinguishing; this was defined in [1]. The
introduction of the distinguishing number was a great success; by now about one
hundred papers have been written motivated by this seminal paper. The core of the
research has been done on the invariant itself, either on finite [3, 8, 9].

Ferrara et al. [6] extended the notion of a distinguishing labeling to a list dis-
tinguishing labeling. A list assignment to G is an assignment L = {L(v)},ev(e)
of lists of labels to the vertices of G. A distinguishing L-labeling of G is a distin-
guishing labeling of G where the label of each vertex v comes from L(v). The list
distinguishing number of G, D;(G) is the minimum k such that every list assignment
to G in which |L(v)| = k for all v € V(G) yields a distinguishing L-labeling of G.
Since all of the lists can be identical, we observe that D(G) < D;(G). In some
cases, it is easy to show that the list-distinguishing number can equal the distin-
guishing number. For example, it is not difficult to see that D(K,) =n = Di(K,),
D(K,,) =n+1= D|(K,,) and D;(C,) = D(C,) = 2 [6]. In particular, Ferrara et
al. [7] extended an enumerative technique of Cheng [5], to show that for any tree
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T, Di(T) = D(T). Ferrara et al. [6] asked the following question at the end of their
paper.

Question Does there exist a graph G such that D(G) # D;(G)?
Amusingly, Ferrara feels that no such graph G exists, while Gethner believes this
question can be answered in the affirmative.

In this paper we first study and compute the list-distinguishing number for some
families of graphs, such as power of hypercubes, friendship and book graphs. We
also state a necessary and sufficient condition for graph G satistying D;(G) = D(G).

2. Main Results

The Cartesian product of graphs G and H is a graph GOH with vertex set V(G) x
V(H). Two vertices (u,v) and (ug,v) are adjacent in G x H if and only if u = ug
and vvy € E(H) or uug € E(G) and v = vy. The rth Cartesian power of a graph
G, denoted by G", is the Cartesian product of G with itself taken r times. That
is G" = GOGO...0G, r-times. The graphs G and H are called factors of the
product GLJH. A graph G is prime with respect to the Cartesian product if it
is nontrivial and cannot be represented as the product of two nontrivial graphs.
Recently, Chandran, Padinhatteeri, and Ravi Shankar in [4] proved the following
results:

THEOREM 2.1. Let G be a connected prime graph, then

i) If |G| # 2, then Dy(G") =2 forr > 3.
ii) If |G| =2 then D)(G") =2 forr >4 and D,(G") = 3 when r € {2,3}.

COROLLARY 2.2. If a connected graph G is prime with respect to the Cartesian
product, then Di(G") = D(G") for r > 3, where G" is the Cartesian product of the
graph G taken r times.

The pth power of a graph G is the graph whose vertex set is V' (G) and in which
two vertices are adjacent when they have distance less than or equal to p. They also
determined the list distinguishing number of pth power of hypercube.

Here, we consider the friendship graphs and the book graphs and compute their
list-distinguishing number. We begin with the friendship graph. The friendship
graph F,, (n > 2) can be constructed by intersecting n copies of C3 at a common
vertex.

1++v8 1
THEOREM 2.3. For every n > 2, Di(F,) = D(F,) = [%—‘ .

The n-book graph (n > 2) is defined as the Cartesian product of K, and P,
ie., Ki,00P,. We call every C, in book graph B, a page of B,,. All pages in B,
have a common side vgwy. The distinguishing number of B,, was computed in [2],
and we shall show that D(B,,) = Dy(B,,).

THEOREM 2.4. For everyn > 2, Dy(B,)) = D(B,) = [/n].

196



ON THE LIST DISTINGUISHING NUMBER OF GRAPHS

In the rest, we try to obtain a necessary and sufficient condition for a graph
G such that D(G) = D;(G). To do this, first we need to state some notation and
results from set theory. Let G be a graph with V(G) = {ay,...,a,} and D(G) = d.
Let L = {L;}, be an arbitrary sequence such that |L;| = d and L; C {1,...,m}
for some m > d and every 1 < ¢ < n. If L is a distinguishing L-labeling of G
then there exists a distinguishing labeling C' of vertices of G such that C(v;) € L;
for all 1 <7 < mn. On the other hand for every distinguishing labeling C', we can

construct ("7~))" sequences L(©) = {L )} ', such that C(v;) € LEC), |L§C)| =d and

2 C{1,...,m} for every 1 < i < n. We call such sequences the (m,d)-related
sequences to C. If we denote the set of all related sequences to C' by Ei{zj’;i"“”}(C),
then |£§:117;1'5"a”}(0)| = ("7)". Let £(G,m) be the set of all distinguishing labeling of
G with at most m labels {1,...,m}. Set L(G,m) = {C4,...,C}, }. Wesuppose that

Bg;l(’i) “}(Cy,...,C, ) is the set of all those sequences L = {L;}"_, such that |L;| =
d and L; C {1,...,m} which are constructed using the distinguishing labelings in
L(G,m), i.e. B({:;;z Oy, G ) = Ui, E{al’ ’a"}(Ci). By these statements we

have the followmg theorem:

THEOREM 2.5. Let G be a graph with V(G) = {a,...,a,} and the distinguish-
ing number D(G) = d. Let L(G,m) = {C},...,Cy, } be the set of all distinguishing
labeling of G with at most m labels {1,...,m} where m > d. An arbitrary se-
quence L = {L;}' | with |L;| = d and L; C {1,...,m} for every 1 < i < mn, is a
distinguishing L-labeling of G, if and only if L € B{al’ ’a"}(C’l, o Gy
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Keywords: p-Group, Schur multiplier.

AMS Mathematical Subject Classification [2010]: 20J99, 20D15.

1. Introduction

Let G be a group presented as the quotient F'/R of a free group F by a normal
subgroup R. The Schur multiplier of G is defined as
~ RN y(F)

MO =R
It is well known that the Schur multiplier of G is abelian and independent of the
choice of its free presentation. Also, the Schur multiplier of a direct product of
two finite groups is isomorphic to the direct sum of the Schur multipliers of the
direct factors and the tensor product of the two groups abelianized. Therefore, if
G =l @ ® Ly, where m;q1|m;, for 1 <i <k — 1, then

M(G) 2 Ly ®Z2 & --- B ZEY,

m

where Zﬁff) denotes the direct product of n copies of the cyclic group Z,,. In addition
to abelian groups, the exact structures of Schur multipliers for some non abelian
groups have been determined. Moreover, the problem of finding a sharp bound for
the order of Schur multipliers was interested by some authors. For a p-group G of
order p", Green [4] proved that [M(G)| < pz"™ 1. Niroomand [7] improved this
bound for a non abelian group in terms of the order of its derived subgroup. The
Schur multiplier of groups G of nilpotency class 2 with elementary abelian G/, (G)
are investigated by Evens and Blackburn [3]. They found the Schur multiplier of
extra special p-groups. Rai [8] considered the other extreme of the special p-groups
G where |y2(G)| is maximum and gave a sharp bound for the order of their Schur
multipliers. The Schur multiplier of special p-groups of rank 2 was studied by Hatui
[5]. Here, we would like to determine a sharp bound for the order of the Schur
multipliers of special p-groups of rank 3.

By existing exact sequences, some bounds for the order of the Schur multipliers
of groups are given. In the following, one of such exact sequences is stated.
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THEOREM 1.1. [6, Theorem 2.5.6] Let Z be a central subgroup of a finite group
G. Then the following sequence is exact.

G/G' ®Z% MG) S M(G/Z)— G NZ 1.

Main Theorem. Let G be a special p-group of rank 3, and exponent p. If p is
an odd prime and d = d(G) is the minimal number of generators of G, then
a) M(G) is elementary abelian,
b) prih8 < IM(G)] < prttD,
c) G®G is an abelian p-group.
d) |GAG|< p%d(d—1)+97 G ® Gl < pd2+97 and |J2(G)| < pd2+6-

2. Main Results

Let G be a special p-group of order p™ and rank 3. Hence, the center, the Frattini
subgroup and the derived subgroup of G are coincide and isomorphic to ®3Z,.
Consider three vector spaces G',G/G’ and G/G' ® G’ over F,. Let z,y, and z be
arbitrary elements in G. Following Rai [8], suppose that (z,y) denotes the element
172(G) @YP +y72(G) ®@aP and (x,y, z) denotes the element v, (G) @[y, 2] +y72(G) ®
[z, 2] + 27(G) ® [x,y] € G/72(G) @ 12(G). Moreover, X, and X; are the spanned
subspace by all elements (z,z) and (z,y, 2z) of G/G' ® G', respectively. Let X :=
X1 4+ Xy, and d = d(G). Using Theorem 1.1, we will have

M(G)] _ IM(G/Z)]
T\, |G'NnZ|

Moreover, by [6, Corollary 3.2.4], KerAz ) = X. Therefore, [ImAz )| = p**/|X],
and

d(d—1)—3+3d
| X]
Hence, for finding a suitable bound for the order of Schur multiplier of G, it is

enough to characterize the set X.
Now, following the method used by Hatui [5], we can prove the main result.

Proof of Main Theorem. (a) Consider, the homomorphism o : G/G'ANG/G" —
(G/G'®G") /X given by 0(TAY) = (TRy? + (5)Y® [x,y]) + X. Evens and Blackburn
[3, Theorem 3.1] showed that, there exists an abelian group M with a subgroup N
isomorphic to (G/G' ® G')/ X, such that

M) =2

1N — M 5G/GAG/G — 1,

is exact and o&(m) = mP for all m € M*. Also, they considered the epimorphism
p:G/G'"NG/G — G’ given by p(T AY) = |z,y] and proved that M(G) = M, in
which M is the subgroup of M* containing N such that M /N = Kerp. Since p is odd
and GP = 1, the homomorphism ¢ is the trivial map, and therefore o{(z) = 2 = 1.
Thus M(G) is elementary abelian.

(b) Let 21, 29, and z3 be the generators of G, and let 1, s, . . . , 4 be the generators of
G such that [z1, xs] € (z1) is non trivial. Then the set Ay := {(x1, 22, 2;) |3 < i < d}
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consists of d — 2 linearly independent elements of X;. Now if, for some k,3 < k < d
[z1, 2] € (22) is non trivial, then the set Ay = {(z1,2,2;) [3 < i < d,i # k}
consists of d — 3 linearly independent elements of X;. Moreover, let for some j,3 <
J <d[x1,x;] € (z3) is non trivial, then the set A3 := {(21,2;,2;) |3 <i < d,i #k,j}
consists of d — 4 linearly independent elements of X;. Clearly, A;’s for t = 1,2,3
are three disjoint sets and A; U Ay U A3 is the smallest linearly independent set of
elements in X;. Therefore, p3¢=9 < |X}|. Since GP? is trivial, we will have | X| = |X;]|.
Hence p24@-1-3 < |M(G)| < p2#@=1+6 a5 desirable.

(¢) The result follows [1, Proposition 3.1].

(d) Let v(G) = {g®g¢ | g € G}), and Jo(G) be the kernel of k : GG — G’ given
by g1 ® g2 — [g1, g2] for all g1, g2 € G. Clearly, |G AG| = |M(G)||G'|. Using part (c),

we get G ® G is abelian. By [2, Lemma 1.2(7), Theorem 1.3(i7), and Corollary 1.4],

we will have 7(G) 2 Z3 MY Thus GoG = (GAG)B(G) & (GAG)@ZF ")

and Jo(G) = M(G) @ Z(z441) Now, one can obtain the result by part (b). O
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ABSTRACT. The aim of this work is to study (quasi-)morphic property for the trivial extension
R « M of a bimodule M over a ring R. For instance, we show that if R is a commutative domain
and annpg(z) = 0 for some z € M, then R o< M is (quasi-)morphic if and only if R is a field and
M ~ R. Moreover, examples which illustrate our results will be provided.
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1. Introduction

Throughout this paper, we assume that R is a ring (not necessarily commutative)
with a nonzero identity and M is an R — R bimodule. The notions r.anng(X) and
lL.anng(X) mean the right annihilator and left annihilator of X in R, respectively,
where X is a nonempty subset of M. If R is a commutative ring then the annihilator
of X in R is denoted by anng(X).

A ring R is called left quasi-morphic if for any a € R, there exist elements
b,c € R such that l.anng(a) = Rb and Ra = lanng(c). The ring R is called left
morphic provided that the elements b and ¢ can be chosen equal. Right (quasi-
Jmorphic rings are defined analogously. A left and right (quasi-)morphic ring R is
called (quasi-)morphic. These rings were first introduced by Nicholson, Campos and
Camillo in [2, 8] and were discussed in great detail in [1, 3, 4, 6] and [7]. Clearly
left morphic rings are left quasi-morphic however the converse does not hold true
in general. It is proved that for a commutative ring R, the notions morphic and
quasi-morphic coincide [2; Corollary 4]. Unit-regular rings are examples of morphic
rings [8, Example 4] and also every von-Neumann regular ring is quasi-morphic [2].
Moreover, it is proved that unit-regular rings are precisely von-Neumann regular and
morphic rings [8, Proposition 5|. Besides, extensions of (quasi-)morphic rings has
been of focus by a number of researchers, for example see [1, 4] and [7]. It has been
proved that a ring R is unit-regular if and only if R[z]/(z"*!) is morphic where
n > 1. Moreover, (quasi-)morphic property for the ring R[z,o]/(z"™) (n > 1)
where o is a ring homomorphism over R, has been also investigated [7] and [5].
Quasi-morphic property of the trivial extension R o< M has also been studied where
R is a principal ideal domain and M is an R-module. For example, it has been
shown that Z oc M is morphic if and only if M ~ Q/Z where Q is the set of rational
numbers [4, Theorem 14].
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These motivated us to investigate when the trivial extension R o< M is a left
(quasi-)morphic ring. We give some examples showing that R o M is (quasi-
Jmorphic does not imply that R is (quasi-)morphic and vice versa. Among other
results, we will show that if R is a commutative domain, M is an R-module and
0 # € M such that anng(z) = 0 then R o« M is (quasi-)morphic if and only if
R is a field and M ~ R. As an application of our results, we obtain Corollary 2.7,
which is also proved in [5, Proposition 11].

2. Main Results

We remind that in whole of the paper R is a ring and M is an R — R bimodule. The
trivial extension of R and M is denoted by R o< M and defined by {(a,m) | a €
R, m € M}. The addition is defined componentwise and multiplication is defined
by

(a1, m1)(az, ma) = (aras, armg + mias).
We note that it is easy to see that R o« M is isomorphic to the subring

{( 6 T ) | r € R,m € M} of upper triangular matrix ring ( ](? ]\R4 ) We
are interested to investigate when the trivial extension R oc M is (quasi-)morphic.
We begin with the following two examples which show that the condition “R o« M

is (quasi-)morphic” does not imply that “R has the property” and vice versa.

EXAMPLE 2.1. We show that if R is left (quasi-)morphic then R o M does not
have the property in general. Note that if S is a commutative domain and M is a
S-module then R o R is never left quasi-morphic where R = S o< M [1, Proposition
2.4].

Now let F' be a field and R = F o« F. Thus by Theorem 2.7, R is a commutative
morphic ring however by the above note R o< R is not even quasi-morphic.

EXAMPLE 2.2. If R o< M is left (quasi-)morphic then R is not necessarily left
(quasi-)morphic. To see it, consider the trivial extension S = Z «x Q/Z. By [4,
Theorem 14], S is a morphic ring. While Z is not quasi-morphic by the fact that
left quasi-morphic domains are exactly division rings [2, Lemma 1].

In the following we proceed with the study of quasi-morphic property for the
ring R o« M. First, we prove the following lemma for latter uses.

LEMMA 2.3. Let R o< M be left morphic. If 0 # x € M and r.anng(xz) =0 then
lanng(z) = 0.

PROOF. Let S := R o M be left morphic and 0 # x € M with r.anng(z) = 0.
There exists an element (s,y) € S such that S(0,x) = Lanng((s,y)) and S(s,y) =
l.anng((0,z)). Therefore (0,z)(s,y) = 0. Since r.anng(z) = 0, s = 0. Now let r €
l.anng(x). Therefore (r,0) € Lanng((0, ) and so (r,0) € S(0,y). Thus there exists
an element (t,m) € S such that (r,0) = (¢,m)(0,y) = (0, ty). Hence r = 0. O

THEOREM 2.4. Let R o< M be left quasi-morphic. If there exists a monzero

element © € M such that either r.anng(z) = 0 or Lanng(z) = 0, then gM is cyclic.
Moreover, if R o< M 1is left morphic then M ~ R as left R-module.

204



ON TRIVIAL EXTENSIONS OF MORPHIC RINGS

PROOF. Let S := R o« M. We note that it is routine to check that
Lanng((0,y)) = lLanng(y) o< M,

and S(0,y) = 0 o< Ry, where y € M. Suppose that S is a left quasi-morphic ring,
0# 2 € Manda:=(0,z) € S. Therefore there exist elements (r, m), (s,n) € S such
that Lanng((r,m)) = Sa and Lanng(a) = S(s,n). We consider the case r.anng(x) =
0. Since a(r,m) = 0, (0,zr) = 0 and so r = 0. By the above note Sa = 0 x Rx
and Lanng((0,m)) = Lanng(m) oc M. Therefore 0 x Rx = l.anng(m) o< M. Thus
M = Rz and we are done. Now in case l.anng(z) = 0, since lL.anng(a) = S(s,n),
(0,sx) =0 and so s € Lanng(x) = 0. We remind that

0 < M = lLanng(z) x M = Lanng(a) = S(0,n) = 0 x Rn.

Therefore M = Rn as desired. In particular, assume that S is left morphic. By
Lemma 2.3, it is enough to prove the case l.anng(z) = 0. By the previous part, we
know that M = Rn where n € M and l.anng(a) = S(0,n). Since S is left morphic,
Sa = lanng((0,n)). Therefore 0 x Rz = l.anng(n) o M and so Lanng(n) = 0.
Therefore M = Rn ~ R as left R-module. The proof is complete. 0J

COROLLARY 2.5. Let R be a commutative ring, M be an R-module and 0 # x €
M such that anng(z) = 0. If R o M is quasi-morphic then M ~ R and R is also
quasi-morphic.

ProOOF. Let R o« M be quasi-morphic. We remind that every commutative
quasi-morphic ring is morphic [2, Corollary 4]. Therefore by Theorem 2.4, M ~ R
as R-module and so the trivial extension R o< M is isomorphic to R « R. Therefore
R must be quasi-morphic [1, Corollary 2.3]. O

THEOREM 2.6. Let R be a commutative domain and x be a nonzero element of
M such that anng(x) = 0. Then the following statements are equivalent.
a) R oc M is a morphic ring;
b) R o« M is a quasi-morphic ring;
¢) R is a field and M ~ R.

PROOF. (a) = (b). It is clear.
(b) = (c). It follows from Corollary 2.5 and the fact that quasi-morphic domains
are exactly division rings [2, Lemma 1].
(c) = (a). Let M ~ R and R be a field. Therefore R x M ~ R « R. Let (a,z) be
any nonzero arbitrary element in S where S = R o« R. If a = 0 then it is easy to see
that S(0,2) = anng((0,z)). If @ # 0 then it is also routine to check that S(a,z) = S
and anng((a,z)) = 0. Therefore R o< R is a morphic ring and so is R o< M. O

As an application of Theorem 2.6, we can deduce the following corollary which
is proved in [6, Proposition 11].

COROLLARY 2.7. Let D be a field and V' be a bimodule over D. Then D <V is
(quasi-)morphic if and only if dim(pV') < 1.
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PROOF. (=). If V is a nonzero D-module and D « V' is (quasi-)morphic, then
by Theorem 2.6, V' ~ D and so dim(pV) = 1.
(«<). If V=0 then clearly D o< V ~ D is (quasi-)morphic. Otherwise, V' ~ D and
then by the above theorem, D o V' is (quasi-)morphic. 0

We end the paper with the following corollary showing that R o< ) is not quasi-
morphic when R is a commutative domain and @) is the quotient field of R such that

R+Q.

COROLLARY 2.8. If R is an integral domain which is not division ring then
R o Q s not quasi-morphic where Q) is the quotient field of R.

ProOOF. It is an application of Theorem 2.6. U
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1. Introduction

Tridiagonal matrices and their applications have been studied in many papers such
as [4, 5] and [9]. Moreover, tridiagonal matrices are used in P-polynomial table al-
gebras. More precisely, the first intersection matrix of a P-polynomial table algebra
is a tridiagonal matrix whose eigenvalues can give all characters of the P-polynomial
table algebra, see [1, Remark 3.1]. Additionally, the Bose-Mesner algebra of any as-
sociation scheme is a table algebra and hence, the characters of table algebras can
be applied in studying the properties of association schemes, see [6]. However, cal-

culating the characters of table algebras explicitly is sometimes hard or impossible.
Here, we intend to calculate the characters of two classes of P-polynomial table
algebras which are studied in [7] and their first intersection matrices are as follows:

0 1 0 1
202 0 « 2y 0 v
a 0 « a 0 0%
He= D= ,
« 0 « « 0 v
@ XS d+1)x (d+1) 200 0/ (aq1yx(d4)

for a,v € RT. To this end, we apply some linear algebra methods and the tridiag-
onal matrices in the forms of

0 1 a b
c 0 1 2c b
c 0 1 c a b
(2) P = . o Qn = e o ja,b,c €C, be £ 0.
1 b
c c a
nxn nxn
*Speaker
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Also, we can calculate the characteristic polynomial of P, and @,, from the results

in [2] and [3] as follows
) o=l = (0" U (552 et - il = 20/ (22,

where U, and 7,, are the n-th degree Chebyshev polynomial of the second and first
kind, respectively.

2. P-Polynomial Table Algebras

In this section, we review some important concepts from table algebras and P-
Polynomial table algebras; see [1] and [8] for more details.
Let A be an associative commutative algebra with finite-dimension and a basis
B = {z¢,x1,...,24}, where zqg = 14. Then (A, B) is called a table algebra if the
following conditions hold:

1) Tilj; = anz() ﬂijmxm with ﬁijm c R+ U {O}, for all i, ],

ii) there is an algebra automorphism of A (denoted by ~), whose order divides

2, such that if z; € B, then Z; € B and i is defined by z; = T;;

iii) for all 7, j, we have B;jo # 0 if and only if j = i; moreover, B;, > 0.
(A, B) is called a real table algebra, if i = i, for 0 < i < d. The i-th intersection
matrix of (A, B) is as

5%’00 /Bz’Ol BiOd

Bi: /Bi‘lO /Bi‘ll Bi‘ld

Bido Biar - Bidd (d+1)x (d+1)

where z;z; = anzo BijmTm, for all 4,7, k.

For any table algebra (A,B) with B = {xg = 14,21, -, x4}, there exists a
unique algebra homomorphism f : A — C such that f(x;) = f(z;) € R*, for
0 <i<d,see[8]. If f(x;) = B for all i, then (A4, B) is called standard. A real
standard table algebra is called P-polynomial if for each i, 2 < ¢ < d, there exists a
complex coefficient polynomial v;(x) of degree i such that x; = v;(z1). If (A,B) is a
P-polynomial table algebra, then for all ¢, there exist b;_1, a;, c;+1 € R such that

(4) 1T = b1 + a2 + ci1Tisa,

with b; #0, (0<i<d—1),¢ #0, (1 <i<d),and b_; = cqy1 = 0. Hence, the
first intersection matrix of a P-polynomial table algebra is as follows.

Gy C1
bo ap Co
B, = by as
Cd
bi—1 aq

(d+1)x (d+1)
Let (A, B) be a table algebra. Since A is semisimple, the primitive idempotents of
A form another basis for A, see [8]. Consequently, if {eg, e1,...,eq} is the set of the
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primitive idempotents of A, then we have x; = Z?:o pi(j)ej, where p;(j) € C, for
0 <i,j <d. The numbers p;(j) are the characters of the table algebra. Let (A, B)
be a P-polynomial table algebra. Then the p;(j) are equal to the eigenvalues of its
first intersection matrix and for 2 < ¢ < d, we have

(5) pi(j) = vi(p1(5)),

where v;(x) is a complex coefficient polynomial such that z; = v;(x1).

3. Main Results

We now study the characters of two classes of P-polynomial table algebras whose
first intersection matrices are given in (1).

THEOREM 3.1. Let (A,B) be a P-polynomial table algebra with B = {zo =
La,x1,...,2q4} and its first intersection matriz By is equal to the matriz C' in (1).
Then the characters of (A,B) are

po(j) = ) =\, = 2acos (2?1]47:1)
A . ,
pz(] = ( ]2—2CY (m)-Oé\/a)\jUi_g <m>>, 2§Z§d,0§j§d

PRrROOF. For each i, 0 < i < d, the p;(j), 0 < j < d, are equal to the eigenvalues
of the i-th intersection matrix B;. So, it is obvious that py(j) = 1 for all j. Let
Ryi1(z) = |xlgy1 — By and M, be a tridiagonal matrix in the form of

nxn

Set K,,(x) = |z1,— M,|. We can see that R41(z) = Kqy1(x). By Laplace expansion
and using the characteristic polynomial of @, in (3), we get

(6) Kgpi(z) = 2a%t! (Td+1 (L) —Tu(2) ) :

So, the pi(j) can be obtained from (6). To calculate the p;(j), 2 < i < d, we obtain
the polynomial v;(z), where x; = v;(z1). Obviously, v4(x) = x, and from (4), we get

) = (27— 20), vile) =~ (ava(a) — (@) .., vala) =+ (ova1(ax) — v a(a)).

Let the recursive function ¢, (z) = zp,_1(x) — @p,_9, (x) with ¢1(z) = axr and
¢o(r) = * — 2a2. Hence, ¢, (x) can be obtained by the following determinant and
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equation

azr 1
202 z/a 1

(7) ST spn(@) = (27 = 20 Hyo(x) — @z Hy3(x),

nxn

where H,(z) is the characteristic polynomial of the matrix P, in (2) with ¢ = «a.
Finally from (3), (5) and (7), the proof is completed. O

THEOREM 3.2. Let (A,B) be a P-polynomial table algebra with B = {xy =

La,x1,...,2q4} and its first intersection matriz is equal to D in (1). Then the char-
acters of (A, B) are

po(j) =1, plfg') =\ =2/aycos (4),
pili) = Y (02— 200U (25) — varUis (25)) . 2<i<d 0<j<d

PROOF. Obviously, po(7) = 1 for all j. Set Ryi1(x) = |zlgy1 — B1|- Let N, be
the tridiagonal matrix as follows

a 0 v
20 0O

nxn

and K,(x) = |zl, — N,|. We have Ry.1(z) = Ku41(z). By Laplace expansion and
using the characteristic polynomial of @, in (3), we have

® K@) = 2w (T () - T ()

So, the pi(j) are obtained from (8). To calculate the p;(j), 2 < i < d by the
argument as given in Theorem 3.1, we consider the recursive function ¢, (z) =
Tpn_1(T) — @, 9, (z) with ¢1(z) = v and @o(z) = 2* — 2ay. So, v, () can be
obtained by the following determinant and equation

yx 1
20 x/y 1
a T 1
(9) o pn(z) = (2% — 2079) Hyp(x) — e H,_3(2),
a x 1
a T

nxn

where H,(z) is the characteristic polynomial of the matrix P, in (2). So from (3),
(5) and (9), the proof is complete. O
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ABSTRACT. Skjelbred and Sund presented (1977) their method of constructing all nilpotent Lie
algebras of dimension n given those algebras of dimension < n, and their automorphism group.
Leibniz algebras are certain generalization of Lie algebras. The concept of Leibniz algebra was
first introduced by J. L. Loday (1993) and the subject has been studied since them. By minor
but important adjustments, we apply the Skjelbred-Sund method to classify nilpotent Leibniz
algebras in low dimensional cases.
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1. Introduction

Leibniz algebras was first introduced by Loday in [5] and [6] as a non-anti symmetric
versions of Lie algebras. Many results of Lie algebras were also established in Leibniz
algebras. The question naturally arises whether the corresponding results can be
extended to the more general framework of the Leibniz algebras. The classification
problem of complex nilpotent Leibniz algebras was first studied by Loday. In [6] he
give a complete classification of complex nilpotent Leibniz algebras of dimension n <
2. Later Ayupov and Omirov classified 3—dimensional complex nilpotent Leibniz
algebras in [2]. As stated above one of the techniques to classify nilpotent Lie
algebras was introduced by Skjelbred and Sund. Recently, Rakhimov and Langari
used Skjelbred-Sund method in Leibniz algebras for the first time in [7]. They
also applied in [8] and [4] this technique to obtain the classification of complex
nilpotent Leibniz algebras of dimension n < 4. Comparing the results of [4] and [7]
with classification in [1] and [3] we realized that the Skjelbred-Sund method works
also very well. In this part we give the basic definitions and properties of Leibniz
algebras.

DEFINITION 1.1. A Leibniz algebra L is a vector space over a field F' equipped
with a bilinear map [-,-] : L x L — L satisfying the Leibniz identity

[%, L%ZH = [[x,y],z] - HZE,Z],y], (%,y,ZGL).
Obviously, a Lie algebra is a Leibniz algebra. A Leibniz algebra is a Lie algebra
if and only if [z, 2] = 0, for all z € L. Let L be a Leibniz algebra, and V' be a vector
space over F. Then the bilinear maps 0 : L x L. — V with

0(x, [y, z]) = 0z, ], 2) — 0([z, 2] y),  (z,y,2€ L)
are called Leibniz cocycles. The set of all Leibniz cocycles is denoted by ZL? (L, V).
Let 6 € ZL*(L,V). Then we set Ly = L &V and define a bracket [-,-] on Ly by

[z +v,y+w| =[x,y +0(x,y),

*Speaker
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where [-, -], is the bracket on L.
The proof of the following lemma can be found by a simple computation.

LEMMA 1.2. [4] Ly is a Leibniz algebra if and only if 0 is a Leibniz cocycle.

The Leibniz algebra Ly is called a central extension of Lby V. Letv: L — V
be a linear map, and define n (z,y) = v ([z,y]). Then it is easy to see that n is a
Leibniz cocycle called coboundary. The set of all coboundaries is denoted by
BL*(L,V). Clearly, BL*(L,V) is a subgroup of ZL?(L,V). We call the factor
space, denoted by
HIL*(L,V)=ZL*(L,V) /BL?(L,V), the second cohomology group of L by V.
The following lemma shows that the central extension of a given Leibniz algebra L
is defined up to a coboundary.

LEMMA 1.3. [4] Let L be a Leibniz algebra and n be a coboundary, then the
central extensions Ly and Lg.,, are isomorphic.

When constructing Leibniz algebras as Ly = L&V, we want to restrict to 8 such
that the center of Ly coincides with V. This way we discard constructing the same
Leibniz algebra as central extension of different Leibniz algebras.

The center of a Leibniz algebra L is defined as follows:

C(L)={x € L| [s.1] = [L.a] =0},
For § € ZL? (L,V), set
={rxeL|f(x,L)=06(L,x)=0}

which is called the radical of (9 (Rad(#)=6+). Let now L be a Leibniz algebra

with k—dimensional center C' ( ), v L — V be a linear function and such that

~

v(C(L)) = V. Consider L = L/C’( ) and get an isomorphism L=La V, where
Ty +u, v )-uandy—x—kC( )e L/C(L) = L. We put § =wvol, -], that is

0(x,y) = v[z', 9], where 2’ + C(Z) =z, iy + C(Z) = .

This shows that L and Ly are isomorphic. Hence each Leibniz algebra with center
of dimension k is of the form Ly, where 6 is a Leibniz cocycle. We conclude that
any Leibniz algebra with a nontrivial center can be obtained as a central extension
of a Leibniz algebra of smaller dimension. The proof of the following lemma is
straightforward.

LEMMA 1.4. If0 € ZL?(L,V), then C(Lg) = (0+- NC(L)) + V.
DEFINITION 1.5. If L is a Leibniz algebra, we may define
L'=L, L"=[L,L"" (n>1),
where each L" is an ideal of L. The series
['DI2DIPD
is called the descending central series or descending sequence of ideals. If the series

terminates for some positive integer s, then the Leibniz algebra L is said to be
nilpotent.

Y
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2. Main Results

We construct all nilpotent Leibniz algebras of dimension n, given those algebras
of dimension less than n, by central extension. In this section a procedure will
be described through which a nilpotent Leibniz algebra L of dimension n — s is
considered as input. Its output is all nilpotent Leibniz algebras K of dimension n
such that K /C(K) = L, and K has no central components. It runs as follows [4]:

(1) For a given algebra of smaller dimension, we list at first its center (or the
generators of its center), to help us identify the 2—cocycles satisfying 6+ N
C(L)=0.

(2) We also list its derived algebra (or the generators of the derived algebra),
which is needed in computing the coboundaries BL*(L, F).

(3) Then we compute all the 2—cocycles ZL?(L,F) and BL*(L,F) and com-
pute the set HL*(L, F') of cosets of BL*(L, F) in ZL*(L, F). For each fixed
algebra L with given base {ej,e,...,e,}, we may represent a 2—cocycles
0 by a matrix 6 = 3 7| c¢;;Aij, where Aj; is the n x n matrix with (i, )
element being 1 and all the others 0. When computing the 2—cocycles, we
will just list all the constraints on the elements c;; of the matrix 6.

(4) We have ZL*(L,F) = BL*(L, F)®W, where W is a subspace of ZL*(L, F),
complementary to BL*(L, F), and

BL*(L,F)={df | f € C(L,F) = L*},

(d is the coboundary operator). One easy way to obtain W is as follows.
When a nilpotent Leibniz algebra L of dimension n = r 4 s has a basis

in the form {ey,...,er, €41,...,645}, where {ey,...,e.} are the genera-
tors, and {e,41,..., €45} forms a basis for the derived algebra [L, L], with
eyt = l€i,,€5,], where 1 <y, j; <r+tand 1<t <s.

Consider C'(L, F) = L* generated by the dual basis

<f17"‘7f7’7917"’7gs >,
of

<€1,- 56 g1y, Erys >
Then

BL*(L,F)={dh | h € L*} =< dfy,...,df,,dgi,...,dgs >.
Since df;(z,y) = —fi([z,y]) = 0, we have BL*(L,F) =< dg,...,dgs >.
Now we have
ZI*(L,F) =<dg,...,dg, > ®W.

For § € W, we may assume that 6(e;,,e;,) = 0, t = 1,...,s, otherwise, if
(ei,, e;,) = Ui, # 0, we choose 6 + u;,;,dg; instead. When we carry out
the group action on W, we do it as if it were done in HL?*(L, F'), and may
identify HL?(L, F') with W, by calling all the nonzero elements in W the
normalized 2—cocycles.
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(5) Suppose 0 € HL*(L,V) with 0(z,y) = > ;_, 0i(z,y)e; in which 6; €
HL?(L, F) are linearly independent, further - N C(L) = 0.

(6) Locate a list (although redundant) comprised of representatives of the orbits
of Aut(L) acting on the  from 5.

(7) For the locate 0, construct Lg. Discard the isomorphic ones.

2.1. Example of the Method. We will illustrate the Skjelbred and Sund
method in the following example. We will explain our notations and conventions
along the way. Please be reminded that whenever we talk about central extensions,
we always refer to those extensions that are without Abelian factors. We denote the
j—th algebra of dimension ¢ by L; ;. Central extensions of Lgs = Loo @ I (where [
is a 1-dimensional Abelian ideal and Ly : [e1, €1] = e3) in dimension 3 as follows:

Here, HL?*(Ls 9, F) consists of all aA13 +bAg; + cAszy +dA3z3. Aut(Lsy) consists
of

a1 0 0
p=|an afy az|,
az 0 ass

where det(p) = a?,az3 # 0. The automorphism ¢ as above acts as follows

a — aaasz + daz ass,
CH——r ba23a11 + caszaq + da33a31,
d — da3s.

6+ N C(L3z) = 0 if and only if b # 0 and one of a,c,d is not 0. Assume b # 0,
by taking ay; = %, then b —— 1. Now to fix b = 1, we require that a;; = 1. With
these new values for coefficients, the above formulate take simpler form:

a — aass + dagiass,

br—1,
C > ag3 + casz + dagzasi,
d — da2s,.
By taking as3 = —casz3 — daszasy, we get ¢ — 0, and to preserve ¢ = 0, we set
as3 = az; = 0. Now we have
a — aass,
br—1,
c+— 0,
d — da?,.
One of a, d is not 0. If d # 0, by taking as3 = \/LE’ we get d — 1. Now
to fix d = 1, we require that azg3 = 1. In this case when a = 0, we get (1)

la,b,c,d] = [0,1,0,1]. When a # 0, we have (2) [a,b,c,d] = [o,1,0,1] (0 # «).
If d =0, then a # 0 and get (3) [a,b,c,d] = [1,1,0,0]. The representative (2) seems
to be a parametric family, but actually (2) = (1) by e; — €] — ael, es — eq,
es — aeh + €4, ey —> €}, and we can cancel (2). Therefore, the central extensions
of L3 of dimension 4 over C are:
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Lyis: [61, 61] = €2, [62761] = €4, [63763] = €4,

Ly [er,en] = ea, e, e3] = ey, [ea, 1] = ey

In this way, we can classify low dimensional nilpotent Leibniz algebras by using
central extensions [4].
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1. Introduction

For the last few decades several mathematicians studied such graphs on various alge-
braic structures. The first step in this direction was taken by Bosak in 1964 [3]. Then
Csakany and Pollak studied the graphs of subgroups of a finite group [4]. Zelinka
continued the work on intersection graphs of nontrivial subgroups of finite abelian
groups [10]. Various constructions of graphs related to the ring structure are found
in [1, 2, 5]. The theory of hyperstructures has been introduced by Marty in 1934
during the 8" Congress of the Scandinavian Mathematicians [9]. Marty introduced
hypergroups as a generalization of groups and hyperring is structure generalizing
that of a ring, but where the addition is a composition, but a hypercomposition,
i.e, the sum and the product of two elements is not an element but a subset. The
notation of hyperring was introduced by Krasner [8], who used it as a technical tool
in a study of his on the approximation of valued fields. Further materials regarding
intersection graphs, ring and multirings are available in the literature too [5, 6, 7].
The purpose of this paper is the study of intersection graphs of hyperideals
of hyperrings, as a generalization of intersection graphs of classical rings. In this
regards, the notation of absorbing elements with respect are introduced and the
intersection graphs of hyperideals of hyperrings and investigates their properties.

2. Preliminaries

A map ¢ : G" — P*(G) is an n-ary hyperoperation with arity n, where for n = 0
(nullary hyperoperation) is an element of P*(G) and (G,{o0i}ic1) is a hyperalge-
bra (for |I| = 1 is called hypergroupoid) of type ¢ : I — N*  where two hyper-
algebras of the same type are called similar hyperalgebras. A () # W C G is
said to be a subhyperalgebra of G if V (by,...,b,,) € W™, 0;(by,...,b,,) C W.
For similar hyperalgebras (G, {o;}ic1), (G',{0}ic1), a map g : G — G’ is called
a homomorphism if ¥V i € LY (by,...,b,,) € G™ we have ¢(0:((b1,...,bn;)) C
0:(g(b1),...,9(by,)) and a good homomorphism if V i € LY (by,...,b,,) € G™,

*Speaker
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g(0i((b1,...,bn,)) = 0';(g(b1),...,9(by,)). A hypergroupoid (G, o) together with an
associative binary hyperoperation is said a semihypergroup and a semihypergroup
(G, o) is called a hypergroup it ¥V y € G,0(y,G) = 0(G,y) = G(reproduction az-
iom). A hypergroup (G, p) is said to be a canonical , if always (i) o(z,y) = o(y, x)
(i) e € G,V x € G, in a way o(e,z) = o(x,e) = {x}(neutral element), (iii)
z € o(y, z) concludes that y € o(z,n(2)) and z € p(n(y), x), where 7 is an unitary
operation on G(Y z € G, 3 n(z) € G iee € (o(z,n(x)) N (o(n(z),z)),nle) =
e,n(n(z)) = x) and is denoted by (G, g,e,n) or (G,+,0,—). A Krasner hyperring
is a hyperstructure (K, +,.), where (i) (K, +) is a canonical hypergroup, (i7) (K, .)
is a semigroup, (i) Vk,s,t € K : k(s +t) = ks + kt and (s + t)k = sk + tk,
(iv) Vk € K : k.0 =0.k =0, i.e. 30 € K is an absorbing element.

3. Graphs Derived from Hyperrings

In this section, we introduce graph based on hyperideals and seek to some conditions
on hyperideals in hyperring such that obtain especial graphs.

DEFINITION 3.1. Let (K, +,-) be a hyperring. We say that

i) 0 € K is a (+)-absorbing element of K, if for all k € K,k € (0+k)N(k+0),
ii) 0 € K is a (-)-absorbing element of K, if for all k € K,0 € (k-0N0- k),
iii) 0 € K is an absorbing element of K, if it is both (4)-absorbing element and

(+)-absorbing element of K.

From now on, we consider the set of all (+)-absorbing elements of K by O, all
(+)-absorbing elements of K by O} and absorbing elements of hyperring K by Ok.
It is clear that O = O N Oy.

DEFINITION 3.2. Let (K,+,-) be a hyperring and ) # I C K. Then I'is a
hyperideal of K if and only if satisfies in the following conditions:
i) foralyeLLy+I=14+y=1,
ii) for all k € K and y € I, we have (k-y)U (y- k) C L

Let (K, +,-) be a hyperring. Then we will denote the set of all hyperideals of K
by Z(K). Clearly, K € Z(K) # () and will call K as a non-proper hyperideal of any

hyperring.

DEFINITION 3.3. Let K be a hyperring. The intersection graph of Z(K) is the
undirected simple graph (without loops and multiple edges) whose vertices are in
a one-to-one correspondence with all nontrivial hyperideals of K and two distinct
vertices are joined by an edge if and only if the corresponding hyperideals of K have

intersection(if O # 0, then this intersection must be non-absorbing element). We
will denote an intersection graph of Z(K) by I'(K) = (Z(K), E).

In the following, we present an examples for clarifying the definition of intersec-
tion graph of hyperrings.

EXAMPLE 3.4. Let K = {ay, as,as,as}. Then (K, +',-") is a hyperring as follows:
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+' | o as as a4 S la ay ag ay
a; | 1 {CL1, GQ} {al, a3} {al, a4} ap |Gz G2 az dag
as | {a1,as} as {as,as} {ag,as} and a9 |ay as as as .
as {alja2,a3} {02,613} {az,%} {002,03,614} az | az Gz Gz a2
as | {a1,az,a4} {as,as} {az, a3, a4} {az,as} as|az az az ap

Clearly Of = K, O3 = {as} and so Ox = {ay}. Also
I(K) = {Il = {az}, Iz = {a1, a2}, Iz = {as, a3}, 1y = {a4, a2}, Is = {a1, a2, a3},
I = {a1, a2, a4}, Iy = {as, a3, a4}, Is = K },

where {ay} and K are trivial hyperideals of K. So we obtain the intersection graph
I'NK) = (Z(K), E) in Figure 1.

FIGURE 1. Intersection graph Z(K)

THEOREM 3.5. Let q be an odd prime. Then Z((Zy,+4,-q) = {{0},Z,}.

THEOREM 3.6. Assume n € N is an even integer. Then there exist binary

hyperoperations B and X", suchthat
THy=72+;y={rv+y,v+y+b}.
and
TXy =75y = {7y, vy + b}.

then (Z,,,B,X) is a hyperring.

Let K = (Z,,8,X) be the hyperring in Theorem 3.6 and § € K. Define (y) =
U,en 79- The next result immediately follows.

THEOREM 3.7. Let 2<n €N be even, b€ K andj € K. If 2b =0, then
i) (9) € Z(Z,,, B, R),
i) (0) = (b), _
iii) if y # b and ged(y, b) = d, we have () = (d),
iv) I€Z(Z,,8,K) if and only if there exists gy € K, such that I= (y).
THEOREM 3.8. Let2<n €N andbe K. If2b =0, then
i) |Z(Z,,B,X)| = |Div(b)| + 1,
ii) if for anyy € K,y | b, then b € (y).
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COROLLARY 3.9. Let 2 = q1,qs,...,q, be primes, r,51,B2,...,0, € N and n =
[T, ¢*. Then

I(Zn,B,K) = {0}U{{q;"¢5* . . quj) |0 <s1 <Bi—1, and for all 7 #1,0<s; <G}).

THEOREM 3.10. Let n € N be an even. Then I'(Z,,HB,X) = (Z(Z,),E) is a
disconnected graph if and only if for some distinct primes p,q we have n = pq.

THEOREM 3.11. Let n € N be an even, I,J € (Z(Z,,B,X),E). Then I NJ =
(lem(d,d")), where I = (d),J = (d') and d,d" € Div(n/2).

THEOREM 3.12. Let n = ¢™ be an even, where q is a prime. Then m > 3 if and
only if U'(Z,,,B,X) = (Z(Z,), E) is a complete graph.
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1. Introduction

Throughout, R will denote an arbitrary ring with identity, J its Jacobson radical
and all modules will be assumed to be unitary. The injective hull of a right R-module
M is denoted by E(Mg). Also, a ring R is said to be normal if all the idempotents
are central and a right (left) duo ring is a ring in which every right (left) ideal is
two-sided. A ring R is called duo if it is both left and right duo. A cyclic right
R-module Mg = R/I is called finitely presented cyclic if I is a finitely generated
right ideal of R. Also, a ring R is local in case R has a unique maximal right ideal.

In [10], Xu studied flatness and injectivity of simple modules over a commutative
ring and showed that a commutative ring R is von Neumann regular if and only if
every simple R-module is flat. Clearly, every simple right R-module is projective if
and only if every maximal right ideal of R is isomorphic to eR for some idempotent
e € R. F(C-pure projective modules are respectively the F'C-pure relativization of
projective modules and flat modules. Therefore, a natural question of this sort is:
“What s the class of rings R over which every simple right R-module is FC-pure
projective?” The goal of this paper is to answer this question.

2. Main Results

Recall that an exact sequence 0 — A — B — C — 0 of right R-modules is
said to be FC-pure exact if the induced homomorphism

HOIHR(M, B) — HOII]R(M, C),
*Speaker
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is surjective for any finitely presented cyclic right R-module M. A submodule A of
a right R-module B is called a FC-pure submodule if the exact sequence

0— A—B— B/A—0,

is FC-pure. An R-module M is said to be FC-pure injective (resp., FC-pure pro-
jective) if it is injective (resp., projective) with respect to FC-pure exact sequences
(see [1, 2] and [9]).

REMARK 2.1. If every maximal right ideal of a ring R is finitely generated, then
every simple right R-module is F'C-pure projective.

Recall that a ring R is called semilocal if R/J is a semisimple Artinian ring.
Also, a ring R is said to be right perfect if every right R-module has a projective
cover, or equivalently, if R is semilocal and J is right T-nilpotent.

LEMMA 2.2. Quer a semilocal ring R, every simple right R-module is F'C-pure
projective if and only if (R/J)gr is FC-pure projective.

PROOF. (=). Assume that R is semilocal and every simple right R-module is
FC-pure projective. Thus, R/J is semisimple and so it is a finite direct sum of
simple right R-modules. Therefore, (R/J)g is F'C-pure projective by [1, Theorem
4.3].

(<). Assume that R is semilocal and (R/J)r is FC-pure projective. This
implies that each simple right R-module is a direct summand of R/.J. Hence, every
simple module is F'C-pure projective, since F'C-pure projectivity is preserved by
direct summand. 0J

LEMMA 2.3. [9, Proposition 1] Let M be a right R-module. Then the following
statements are equivalent.
i) M is a FC-pure projective.
i) M is a direct summand of a direct sum of finitely presented cyclic modules.
iii) Fvery FC-pure exact sequence 0 — K — P — M — 0 of right R-
modules splits.

LEMMA 2.4. [7, Corollary 4.9] A ring R is right Artinian if and only if it is left
perfect and J is a finitely generated right ideal.

THEOREM 2.5. For a normal right duo ring R, the following statements are
equivalent.
i) R is a right Artinian ring.
i) R is left perfect and every simple right R-module is F'C-pure projective.
iii) R is a left perfect ring and (R/J)g is FC-pure projective.

PROOF. (i) = (ii) is always true.

(i) < (ili) As every left perfect ring is semilocal, it follows by Lemma 2.2.

(ii) = (i) Assume that R is a left perfect ring and every simple right R-module
is F'C-pure projective. As every normal left perfect ring is a finite direct product of
local rings, without loss of generality, we can assume that R is a local left perfect
ring. Thus, by hypothesis, (R/.J)g is F'C-pure projective. Hence, (R/J)g is a direct
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summand of a direct sum of finitely presented cyclic right R-modules by Lemma 2.3.
Also, all finitely presented cyclic right R-modules have a local endomorphism ring,
since R is a local right duo ring. Hence, by [8, Proposition 3|, (R/J)g is a direct
sum of finitely presented cyclic right R-modules. This implies that (R/J)r = R/I
for some finitely generated right ideal I of R, since (R/J)g is indecomposable. Now,
consider the following diagram.

0O — I < R — R/I — 0,

L

0 — Jg <& R — (R/J)r — 0.

By using Schanuel’s Lemma, we have R & Jg = R ® I. Therefore, Jg is a finitely
generated right ideal so that R is a right Artinian ring by Lemma 2.4. U

COROLLARY 2.6. For a duo ring R, the following statements are equivalent.
i) R is an Artinian ring.
ii) R is one-sided perfect and (R/J)r is FC-pure projective.
iii) R is one-sided perfect and every simple right R-module is F'C-pure projec-
tive.
iv) The left-right symmetry of (ii)-(iii).

PRrROOF. Clearly every duo ring is normal (see Remark 2.9). Therefore, Theorem
2.5 allows us to conclude. 0

THEOREM 2.7. If R is a local right duo ring such that E((R/J)g) is FC-pure
projective, then R is a right self-injective ring.

PROOF. Assume that R is a local right duo ring such that E((R/J)g) is FC-pure
projective. Thus, E((R/J)g) is a direct summand of a direct sum of finitely pre-
sented cyclic right R-modules by Lemma 2.3. Also, all finitely presented cyclic right
R-modules have a local endomorphism ring, since R is a local right duo ring. Thus,
by [8, Proposition 3], E((R/J)g) is a direct sum of finitely presented cyclic right
R-modules. But, (R/J)g is uniform and so E((R/J)g) is indecomposable which im-
plies that F((R/J)g) is finitely presented cyclic module. Thus, E((R/J)r) = xR.
Also, by [4, Corollary (3.76)'], E((R/J)r) is faithful. We claim that r.Anng(z) = 0.
To see this, suppose that s € r.Anng(z). Since R is a right duo ring, zRs C zsR =0
and so s € r.Anng(zR) = 0. Therefore, E((R/J)r) = R and so R is a right self-

injective ring. ([l

Recall that a ring R is said to be quasi-Frobenius if R is left or right Noetherian
and left self-injective. A well-known result of Osofsky [6] asserts that a left perfect,
left and right self-injective ring is quasi-Frobenius.

COROLLARY 2.8. For a duo ring R, the following statements are equivalent.
i) R is a quasi-Frobenius ring.
ii) R is one-sided perfrect, E((R/J)r) and E(r(R/J)) are FC-pure projective.
PROOF. (i) = (ii) is clear.
(ii) = (i) As every duo one-sided perfect ring is a finite direct product of local
rings, it follows by Theorem 2.7 and Osofsky’s theorem [6]. O
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REMARK 2.9. One can easily see that if R is a duo ring, then Ra = aR for any
a € R.

Recall that R is said to be a right Kothe ring if each right R-module is a direct
sum of cyclic R-modules. A ring R is called a Kéthe ring if it is both right and left
Kothe ring. It was shown by Koéthe that an Artinian principal ideal ring is a Kothe
ring. Later, Cohen and Kaplansky proved that the converse is also true when R is
a commutative ring.

LEMMA 2.10. [1, Proposition 3.7] For a ring R, the following statements are
equivalent.
i) R is a right Kdthe ring.
ii) Every right R-module is FC-pure projective.
iii) Every right R-module is FC-pure injective.

The following example shows that Corollary 2.8 is not necessarily true when R
is not duo.

ExaMPLE 2.11. Let R be an algebra consisting of all matrices of Z, of the form

a 0 O
0O b 0
c d a

By [5], R is a Kothe ring and so R is an Artinian ring. Put

1 0 0 0O 0 O
e = 0O 0 O and r = 0O 0 O
0 0 1 0O 1 0

By Lemma 2.10, every left and right (simple) R-module is F'C-pure projective. But,
one can easily check that e = e, r = er # re = 0 and M = Re + Rr is a maximal
left ideal of R. Hence, by Remark 2.9, R is not a duo ring. Also, the maximal left
ideal M is not principal. Therefore, R is not a principal left ideal ring so that R is
not quasi-Frobenius by [3, Theorem 4.1].
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ABSTRACT. A finite group G is called an F'—group, if for every z,y € G\ Z(G), Ca(z) < Cc(y)
implies that Cg(x) = Cg(y). The graph D(G) is called the divisibility graph of G if its vertex
set is the non-central conjugacy class sizes of G and there is an edge between vertices a and b
if and only if a|b or bla. We determine the number of connected components of the divisibility
graph D(G) where G is an F—group.

Keywords: Divisibility graph, F-group, Conjugacy class.
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1. Introduction

There are some graphs related to finite groups and this graphs have been widely
studied; see, for example [4, 5, 6, 7].

In [8] A. R. Camina and R. D. Camina introduced a graph. This graph is called
divisibility graph B(X ) for a set of positive integers X. Its vertex set is V(B(X ) =

X* and the edge set is E(D (X)) = {(z,y); 2,y € X*,z|y}. Throughout the paper,
G denotes a finite non-abelian group and z an element of G. ¢ denotes the G-
conjugacy class containing x, |#%| denotes the size of 2% and cs(G) = {|z%|;z € G}
denotes the set of G-conjugacy class sizes and ¢s*(G) = ¢s(G)\{1}. Z(G) and Cg(2)
denote the center of G and the centralizer of x in G, respectively. We consider D(G)
instead of D(cs(G)). The number of connected components of the divisibility graph
D(G) is denoted by n(D(G)).
In [8], the authors posed a question about the number of components of D(G). To
answer this question the authors in [1] showed that the divisibility graph D(G) has
at most two or three connected components where G is the symmetric or alternating
group, respectively. Also they found the number of connected components of the
divisibility graph D(G) where G is a simple Zassenhaus group or an sporadic simple
group in [2]. The authors in [3] proved that if G is a finite group of Lie type
in odd characteristic, then the divisibility graph D(G) has at most one connected
component which is not a single vertex.

In this paper, we investigate the structure of the divisibility graph D(G) where
G is an F'—group. We obtain the number of connected components of the divisibility
graph D(G) where G is an F'—group. A finite group G is called an F'—group, if for
every z,y € G\ Z(G), Cg(x) < Cq(y) implies that Cq(z) = Ca(y).
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2. Preliminaries and Main Results

In [9], the structure of non-abelian F'—groups is given by J. Rebmann that we show
this complete list below:

THEOREM 2.1. [9] Let G be a non-abelian group. Then G is an F—group if and
only if it is one of the following types:

1) G has an abelian normal subgroup of prime index.

2) G/Z(Q) is a Frobenius group with Frobenius kernel L/Z(G) and Frobenius
complement K/Z(G), where L and K are abelian.

3) G/Z(G) is a Frobenius group with Frobenius kernel L/Z(G) and Frobenius
complement K/Z(G) with K abelian, Z(L) = Z(G), L/Z(G) has prime
power order and L is an F'—group.

4) G/Z(G) = Sy and if V/Z(Q) is the Klein four-group in G/Z(G), then V is
non-abelian.

5) G = A x P where P is an F—group of prime power order and A is abelian.

6) G/Z(G) = PSL(2,p") or PGL(2,p"), G' = SL(2,p"), where p is a prime
and p" > 3.

7) G/Z(G) = PSL(2,9) or PGL(2,9) and G' is isomorphic to the Schur cover
of PSL(2,9).

LEMMA 2.2. [10] Let N be a normal subgroup of G and B = b%, C = % with
(|B],|C|) =1 that b,c € N. Then

2) BC' = CB be a conjugacy class of N and |BC|||B| - |C]|.

In the following theorem we investigate the number of connected components of
the divisibility graph D(G), whenever G is a non-abelian F'—group.

THEOREM 2.3. Let G be a non-abelian F'—group. Then the divisibility graph
D(G) has at most three connected components.
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ABSTRACT. A ring R is called a reversible ring, if ab = 0 implies that ba = 0, for every a,b € R.
Many studies have been conducted on reversible group rings in recent years. The aim of this
paper is to generalize some of the previous results about reversible group rings to more general
cases. For this purpose, we introduce a generalization of reversible rings as right gr-ring, where
a right gr-ring is a ring in which ab € I implies ba € I, for every right ideal I of R and a,b € R.
We will study conditions under which a group ring R[G] becomes a right gr-ring. We show that
the group ring K[Qsg] of a group of quaternions Qg over field K is a right gr-ring if and only if
char(K)=0 and the equation 22 4+ %2 4+ 1 = 0 has no solution in K.

Keywords: Reversible, Group ring, Right duo.
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1. Introduction

The rings in this paper are associative with nonzero identity and char(R) is the
characteristic of R. A ring R is called a right duo ring, if every right ideal of R is an
ideal. The notion of reversible ring was introduced by Cohn in [3]. He called a ring
R reversible, if ab = 0 implies ba = 0, for all a,b € R. Kim and Lee in [6], continued
the study of reversible rings. They showed that polynomial rings over reversible
rings need not be reversible and sequentially argue about the reversibility of some
kinds of polynomial rings. Gutan and Kisielewicz in [5] characterized reversible
group ring K[G] of torsion group G over field K.

In this paper, we introduce the noation of right gr-ring as a generalization of
reversible rings which has a close relationship with reversible, symmetric and right
duo rings, where symmetric ring R is a ring which for all a,b,c € R, if abc = 0
then bac = 0. A ring R is called a right gr-ring, if for every right ideal I of R and
a,b € R, ab € I implies that ba € I. We will study conditions under which a group
ring R[G] of a group G over a ring R becomes a right gr-ring. We show that the
group ring K[Qs| of a group of quaternions Qg over field K is a right gr-ring if and
only if char(K) =0 and the equation z? + 3* + 1 = 0 has no solution in K. Using
the results, we can give an example of a right duo ring which is not a right gr-ring.
Also, if M is a maximal ideal of a commutative ring R such that £[Qs] is a right
gr-ring, then char(R) = 0 and for every prime number p € N, we have p.1 ¢ M.

1.1. Introduce the Noation of Right Gr-Ring. In this section, we present
the noation of right gr-ring and study some properties of it which we need in the
main results.
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DEFINITION 1.1. A ring R is said to be a right gr-ring, if for every right ideal I
of R and a,b € R, ab € I implies that ba € I.

It is obvious that every finite direct product of division rings are right gr-rings.
Also Z x D, where D is a division ring, is a right gr-ring. In the following Example,
we give another example of right gr-ring.

EXAMPLE 1.2. Let F be a field and F'(z) be the quotient field of the polynomial
ring F[z]. Let ¢ : F(x) — F(2?) be a map satisfying
@), 6
g(x)”  g(?)
We see at once that ¢ is a ring homomorphism. Now, let

R:{(Z Ab);a&eF@ﬁ.

It is easy to check that R is a subring of My(F'(z)). If

HZ(F&)S)

it is easily seen that H is the unique nonzero proper right ideal of R and R is a right
gr-ring.

Before stating the next proposition, let us first recall that a ring R is called a
right duo ring, if every right ideal of R is an ideal.

PROPOSITION 1.3. Let R be a right gr-ring. Then R is a right duo ring.

In the next section, we will give an example which shows that in general every
right duo ring is not a right gr-ring.

Recall that a ring R is called a symmetric ring, if abc = 0 implies that bac = 0,
for all a,b,c € R.

PROPOSITION 1.4. Let R be a right gr-ring. Then R is a symmetric ring.

DEFINITION 1.5. Let R be a ring. If R is a right (left) injective R-module, then
R is said to be a right (left) self injective ring,.

THEOREM 1.6. For a left self injective ring R, the following conditions are equiv-
alent:

1) R is a right gr-ring.
2) R is a symmetric ring.
2. Main Results

In this section, we study the group ring R[G] of a group G over a ring R which is a
right gr-ring.

DEFINITION 2.1. A non abelian group G is called a Hamiltonian group, if every
subgroup of G is a normal subgroup of G.
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Recall that a torsion group is a group in which each element has finite order. It
is well known that if G is a torsion group and R[G] is a reversible group ring, then
G is an abelian or is a Hamiltonian group, see [2]. The following Proposition gives
this result for the group ring R[G] of a torsion group G over a ring R which is a
right gr-ring.

PROPOSITION 2.2. Let R be a ring and G a group. If the group ring R[G] is a
right gr-ring, then the following statements hold:

1) R is a right gr-ring.
2) If G is a torsion group, then G is an abelian or a Hamiltonian group.

THEOREM 2.3. Let R be a ring and the group ring R[Qs] be a right gr-ring. Then
char(R) = 0.

PROOF. Let char(R) = n # 0. This gives Z,[Qs] C R[Qs]. Since R[Qs] is a right
gr-ring, R[Qs] is a reversible ring. Thus Z,[Qs] is also a reversible ring. From this,
we have n = 2, by [8, Theorem 2.5]. On the other hand, [5, Corollary 4.3] shows

that Z»[Qs] is not a symmetric ring. Hence R[Qs] is not also a symmetric ring and
so is not a right gr-ring, by Proposition 1.4, which contradicts the assumption. [J

For the general case, the converse of Theorem 2.3 is false. For example char(Z) =
0 but the group ring Z[Qs] is not a right gr-ring, because [1, Example 1.2] shows
that it is not a right duo ring.

COROLLARY 2.4. For every natural number n # 1, the group ring Z,|Qs] is not
a right gr-ring.

REMARK 2.5. Marks showed that Zy[Qs] is a right duo ring, see [9, Example 7].
Thus Z[Qs] is a right duo ring, but not a right gr-ring, by Corollary 2.4.

COROLLARY 2.6. Let R be a ring and G a nonabelian torsion group. If the group
ring R|G| is a right gr-ring, then char(R) = 0.

PROOF. Proposition 2.2 implies that GG is a Hamiltonian group. So G = (Jg X
A x B, where A is an abelian group of exponent 2 and B is an abelian group all
of whose elements are of odd order. Since R[G| = (R[Qs])[A x B] and R[G] is a
right gr-ring, R[Qs] is also a right gr-ring, by Proposition 2.2. From this we have
char(R) = 0, by Theorem 2.3. O

COROLLARY 2.7. Let G be a nonabelian finite group and K a field. Then the
following statements are equivalent:

1) The group ring K[G| is a right gr-ring.

2) The group ring K[G] is a finite direct product of division rings.
THEOREM 2.8. If Kis a field, then the following sets are equivalent:

1) The group ring K[Qs| over field K is a right gr-ring.

2) char(K) =0 and the equation x* 4+ y* 4+ 1 =0 has no solution in K.
PROOF. 1 = 2. If the group ring K[Qs] is a right gr-ring, then K[Qg] is a

reversible ring and Theorem 2.3 implies char(K) = 0. From this the equation
z? 4+ y* + 1 = 0 has no solution in K, by [1, Theorem 2.1].
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2 = 1. Since char(K) = 0 and 2> + y* + 1 = 0 has no solution in K, K[Qsg]
is a reversible right duo ring, by [1, Theorem 2.1]. Furthermore, [5, Corollary 3.3]
tells us the group ring K[Qs] is a symmetric ring. Therefore K[Qs] is a right duo
symmetric ring. On the other hand, K[Qg] is a semisimple ring, by [7, Theorem 6.1],
which implies that K[Qg] is a left self injective ring, by [4, Exercise 4H]. From these
we conclude K[Qs] is a right gr-ring, by Theorem 1.6. O

REMARK 2.9. Theorem 2.8 shows that R[Qgs] and Q[Qs] are right gr-rings but
C[Qg] is not a right gr-ring.

COROLLARY 2.10. Let K be a field of zero characteristic. Then the following
statements are equivalent:
1) K[Qs] is a right gr-ring.
2) K|[Qs] is a reversible ring.
3) The equation 1+ z* + y* = 0 has no solutions in K.
4) K[Qs] is a finite direct product of division rings.

COROLLARY 2.11. Let R be a commutative ring and M a maximal ideal of R.
If £]Qs] is a right gr-ring, then
1) char(+) = 0 and therefore char(R) = 0.
2) For every prime number p € N, we have p.1 ¢ M.
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ABSTRACT. Let R be a commutative ring with identity. A proper submodule N of an R-module
M is said to be a 2-absorbing submodule of M if whenever abm € N for some a,b € R and
m € M, then am € N or bm € N or ab € (N :g M). In [1], the authors introduced two
dual notion of 2-absorbing submodules (that is, 2-absorbing and strongly 2-absorbing second
submodules) of M and investigated some properties of these classes of modules. In this paper,
we will introduce the concepts of generalized 2-absorbing and strongly generalized 2-absorbing
second submodules of modules over a commutative ring and obtain some related results.
Keywords: Second, Generalized 2-absorbing second, Strongly generalized 2-absorbing
second.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z will
denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for
any r € R and m € M with rm € P, we have m € P or r € (P :p M) [6]. A non-
zero submodule S of M is said to be second if for each a € R, the homomorphism
S % S is either surjective or zero [9]. In this case Anng(S) is a prime ideal of R. A
proper submodule N of M is said to be completely irreducible if N = (,.; N;, where
{N,}ier is a family of submodules of M, implies that N = N; for some i € I. It is
easy to see that every submodule of M is an intersection of completely irreducible
submodules of M [7].

Badawi gave a generalization of prime ideals in [3] and said such ideals 2-
absorbing ideals. A proper ideal I of R is a 2-absorbing ideal of R if whenever
a,b,c € R and abc € I, then ab € I or ac € I or bc € I. He proved that I is a
2-absorbing ideal of R if and only if whenever I;, I, and I35 are ideals of R with
LiIoI3 C I, then 11, C 1 or 113 C I or I;13 C I. In [4], the authors introduced the
concept of 2-absorbing primary ideal which is a generalization of primary ideal. A
proper ideal I of R is called a 2-absorbing primary ideal of R if whenever a,b,c € R
and abe € I, then ab € I or ac € VI or be € V1.
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The authors in [5] and [8], extended the concept of 2-absorbing ideals to the
concept of 2-absorbing submodules. A proper submodule N of M is called a 2-
absorbing submodule of M if whenever abm € N for some a,b € R and m € M,
then am € N or bm € N or ab € (N :g M).

In [1], the authors introduced two dual notion of 2-absorbing submodules (that
is, 2-absorbing and strongly 2-absorbing second submodules) of M and investigated
some properties of these classes of modules. A non-zero submodule N of M is said
to be a 2-absorbing second submodule of M if whenever a,b € R, L is a completely
irreducible submodule of M, and abN C L, then aN C L or bN C L or ab €
Anng(N). A non-zero submodule N of M is said to be a strongly 2-absorbing second
submodule of M if whenever a,b € R, K is a submodule of M, and abN C K, then
aN C K or bN C K or ab € Anng(N).

The purpose of this paper is to introduce the concepts of generalized and strongly
generalized 2-absorbing second submodules of an R-module M as a generalizations
of 2-absorbing and strongly 2-absorbing second submodules of M respectively, and
provide some information concerning these new classes of modules.

2. Main Results

DEFINITION 2.1. We say that a non-zero submodule N of an R-module M is a
generalized 2-absorbing second submodule or G2-absorbing second submodule of M
if whenever a,b € R, L is a completely irreducible submodule of M and abN C L,
then @ € \/(L:g N) or b € \/(L:g N) or ab € Anng(N). By a generalized 2-
absorbing second module, we mean a module which is a generalized 2-absorbing
second submodule of itself.

ExXAMPLE 2.2. Clearly every 2-absorbing second submodule is a G2-absorbing
second submodule. But the converse is not true in general as we will see in the
Example 2.6.

THEOREM 2.3. Let I and J be two ideals of R and N be a G2-absorbing second
submodule of M. If L is a completely irreducible submodule of M and IJN C L,

then I C\/(L:g N) or JC \/(L:g N) or IJ C Anng(N).

THEOREM 2.4. Let N be a non-zero submodule of an R-module M. The following
statements are equivalent:
a) If abN C K for some a,b € R and a submodule K of M, then a €
(K:g N)orbe /(K :g N) orabe Anng(N).
b) If IJN C K for some ideals I and J of R and submodule K of M, then
IC\(K:gN)orJC\/(K:gN)orlJC Anng(N).

DEFINITION 2.5. We say that a non-zero submodule N of an R-module M is a
strongly generalized 2-absorbing second submodule or strongly G2-absorbing second
submodule of M if satisfies the equivalent conditions of Theorem 2.4. By a strongly
generalized 2-absorbing second module, we mean a module which is a strongly gen-
eralized 2-absorbing second submodule of itself.
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ExAMPLE 2.6. Clearly every strongly 2-absorbing second submodule is a strongly
G2-absorbing second submodule. But the converse is not true in general. For
example, for any prime integer p, let M = Z,~ and N = (1/p* + Z). Then N
is a strongly G2-absorbing second submodule which is not a 2-absorbing second
submodule of M

THEOREM 2.7. Let N be a non-zero submodule of an Artinian R-module M.
The following statements are equivalent:

a) If abN C Ly N Ly for some a,b € R and completely irreducible submodules
Ly, Ly of M, then we have a € \/(Ll NLy:g N)orbe \/(Ll NLy:g N) or
ab € Anng(N).

b) N ia a strongly G2-absorbing second submodule.

THEOREM 2.8. Let M be an R-module. If either N is a secondary submodule of
M or N is a sum of two secondary submodules of M, then N is strongly G2-absorbing
second submodule.

THEOREM 2.9. Let R be a Noetherian ring and N be a submodule of a fully
coidempotent R-module M. Then we have the following.
a) If Anngr(N) is a 2-absorbing primary ideal of R, then N is a strongly G2-
absorbing second submodule of M.
b) If M is a cocyclic module and N is a G2-absorbing second submodule of M,
then N s a strongly G2-absorbing second submodule of M.

The following example shows that Theorem 2.9 (a) is not satisfied in general.

EXAMPLE 2.10. By [2, 3.9], the Z-module Z is not a comultiplication Z-module
and so it is not a fully coidempotent Z-module. The submodule N = pZ of 7Z,
where p is a prime number, is not strongly G2-absorbing second submodule. But
Anng(pZ) = 0 is a 2-absorbing primary ideal of R.

THEOREM 2.11. Let M be a comultiplication R-module and N be a strongly
G2-absorbing second submodule of M. Then N is a strongly 2-absorbing secondary
submodule of M.

ExXAMPLE 2.12. The submodule N = pZ of the Z-module M = Z, where p is a
prime number, is not a strongly G2-absorbing second submodule. But as sec(pZ) =
0, we have N is a strongly 2-absorbing secondary submodule of M.

THEOREM 2.13. Let f : M — M be a monomorphism of R-modules. Then we
have the following.

a) If N is a strongly G2-absorbing second submodule of M, then f(N) is a
strongly G2-absorbing second submodule of M.

b) If N is a strongly G2-absorbing second submodule of M and N C f(M),
then f‘l(N) 1s a strongly G2-absorbing second submodule of M.

LEMMA 2.14. Let R = Ry X Ry and M = M, x M,. Then M; is a fully coidem-
potent R;-module, for i = 1,2 if and only if M is a fully coidempotent R-module.
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THEOREM 2.15. Let R = Ry X Ry be a Noetherian ring and M = M, x M, where
My s a fully coidempotent Ri-module and My is a fully coidempotent Ro-module.
Then we have the following.

a) A non-zero submodule K1 of My is a strongly G2-absorbing second submodule
if and only if N = K1 x 0 is a strongly G2-absorbing second submodule of
M.

b) A non-zero submodule Ky of My is a strongly G2-absorbing second submodule
if and only if N = 0 x Ky is a strongly G2-absorbing second submodule of
M.

¢) If Ky is a secondary submodule of My and Ky is a secondary submodule of
My, then N = Ky x Ky 1s a strongly G2-absorbing second submodule of M.

THEOREM 2.16. Let R = Ry X Ry be a Noetherian decomposable ring and M =
My x My be a fully coidempotent R-module, where M, is an Ri-module and M,y is
an Ryo-module. Suppose that N = Ny X Ny is a non-zero submodule of M. Then the
following conditions are equivalent:

a) N is a strongly G2-absorbing second submodule of M ;

b) Either Ny = 0 and Ny is a strongly G2-absorbing second submodule of My
or Ny = 0 and Ny is a strongly G2-absorbing second submodule of My or
N1, Ny are secondary submodules of My, My, respectively.
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1. Introduction

DEFINITION 1.1. The classical telephone numbers are given by the following
recurrence relation
T(n)=Tn—-1)+(n—-1)T(n-2),
for n > 2, and with initial conditions 7'(0) = 7'(1) = 1 (see [1, 3]).

A sequence of elements is periodic, if after a certain point, it consists only of
repetitions of a fixed subsequence. For example, the sequence 1,0,2,3,5,7,3,5,7,...
is periodic and has the period 3. A sequence of elements is simply periodic with
period [ if the first [ elements in the sequence form a repeating subsequence. For
example, the sequence 1,2,3,8,1,2,3,8,... is simply periodic with the period 4.
First, we state a lemma without proof that establishes some properties of groups of
nilpotency class 2.

LEMMA 1.2. If G is a group and G' C Z(G), then the following propositions hold

for every integer k and u,v,w € G:
1) [uv ] = [u, w] [o, 0] and [u, vw] = [u, ] o, w].
i) [uf,v] = [u,v*] = [u, 0]
i) (uv)* = ukok [v, u] .

iv) If G = (a,b) then G’ = ([a,b]).
For integer m, we consider the finitely presented groups G,,:
Gm = {a,b | a™ =b" =1, [a,b]* = [a,b], [a,b]" = [a,b]), m >2.

LEMMA 1.3. [2] Every element of G,, may be uniquely presented by a"b*[a, b]’,
where 0 < r,s,t <m — 1. Also |G,,| = m3.
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2. Main Results

In this section, first by using the definition of the generalized telephone numbers,
we give some results that will be used later. Then, we introduce the generalized
telephone numbers in a finite group. Lastly, we study the generalized telephone
numbers of G, with respect to X = {a, b}.

DEFINITION 2.1. The generalized telephone numbers T defined for integers
n > 1 and k£ > 1 by the following formula
Ty =kIy y +(n— 1T,

with initial conditions T = 0,74 = 1, and TJ* = k.

THEOREM 2.2. For k =2% a € N, {TF}, is a periodic sequence.

n =4,

PROOF. Suppose W = {(z1,25) | 0 < 1,29 < m—1}. Then |W| = m? is finite.
Fori>1,a >0 and b > a, we have

T3 = Ty (mod m),
TF o =T (mod m).
By using Definition 2.1 (definition of the generalized telephone numbers), we have
TF = Tlf—a-i—i (mod m),
Thi =Ty iy (modm).
It results that {7T%1%°  is a periodic sequence. O

The smallest period of T¥ | denoted by hT* , is called the period of the generalized
telephone numbers modulo m.

EXAMPLE 2.3. By Definition 2.1, we have {T%} = {0,1,2,1,1,1,2,2,2,1,1,...}.
Therefore, hT? = 6.

THEOREM 2.4. If m = H;?:lpfi,t > 1, where p;,1 < i < t, are distinct prime,
then
k _ k k k
hTHt p?i - lcm[hT 9;1 9 th;Q, e ey thft}.

i=1+4 p

PROOF. By using elementary number theory, we can get easy the proof. 0

By using the period of the generalized telephone numbers, we have the following
lemma.

LEMMA 2.5. For integers k =2%n > 2t > 1, and 1 > 3, we have

0) Doy =17 (mod m),
ii) ka(hT,g)+i =TF (mod m).

DEFINITION 2.6. For k > 1, a generalized telephone numbers in a finite group
is a sequence of group elements x1, s, ..., x,,..., for which, given an intial (seed)
set in X ={ay,...,a;}, each element is definted by:

n, for n < 7,
€T =
" a5 ak | forn >



ON THE GENERALIZED TELEPHONE NUMBERS

We denote the generalized telephone numbers of the group G = (X) by QX% (G; X)
and the period of the sequence Q%(G; X) by LQ%(G; X).

Here, we consider G, = (a,bla™ = b™ = 1, [a, b]* = [a,b],[a, b’ = [a,b]),m > 2.
In this section, we study the generalized telephone numbers of G,, with respect to
X = {a,b} and find the period of Q%(G,,; X) for k = 2% o € N. For this we define
the sequence {h, }° and {g,}7° of numbers as follows:

hl - 1,h2 = 0,
hn = (n - 1)hn—2 + khn—la n =3,
g1 =92=93=0,

n—1)(n—2
gn =kgn1+ (n—1)gp—2 + ( )2( )T:—Zhn—Q +k(n— 1T,
k(k—1
+J7leimwh n> 4
Now, we find a standard form of the generalized telephone numbers x4, x5, ..., of

Gm,n > 4.

LEMMA 2.7. For k = 2% a € N, every element of Q%(G,,; X) may be presented
by
2 = a"b™ [a, b9, n > 4.

PROOF. Let k = 2. For n = 4, we have 24 = a*b"[a, b]*2 = a"b™#[a, b]*. Then,
by induction method on n, we get

Ty = xz:%$2—1 — (ahn—Qan—Q [a’ b]gn—Z)nfl(ahn—leg_l[a/, b]gn—l)Q

= ah”*Qngﬂ[a, b2 ... ah”*Qngﬂ[a, b]g"”(ah"*les*l [a, b]9n—1)?
(n—1)(n—2)
S LT P M B e P T T P T
(n—1)(n —2) 2(2— 1)
_ ahanﬁ [a, b]kgn,ﬁ(nfl)gn,ﬁ( 7 )Tﬁ_zhn,2+(2(nfl)Tf_2+TTEL_lhn,l
= g pT la, b]".
Other cases are similar to the proof for k = 2, thus they are omitted. O

LEMMA 2.8. Fort € Z, we have

i) The elements hTY . —th and hTY_ ,—th of the generalized telephone numbers
Qk.(G; X) are as

Thrh | = at*[a, b]”, (mod m), Tppk , = ab2[a, b], (mod m).

ii) The elements t x hTY | —th and t x KT} ,—th of the generalization telephone
numbers Q% (G; X) are as

Tyxhtk | = a*t*[a, b]”, (mod m), Tyxnrh ,, = av?[a, ], (mod m).
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PROOF. (i) For k = 2% o € N, by using Lemma 2.7, we have

h Tk
Ty =a,x9 =b,xz =ab,... xypx = a PTRY Mh[a, bJrTh
_ Pk 1bT:Tk L b Inrk |
th5L+l = Q m—+ ) m-+ I:a7 ] m+ ,
h, -k T K 9,1k
_ ar AT AT
Typr , = a " mr2b M2 [a, b] " Tmt2
h, TF & 9, hrk
_ Mnr t.hT t.hT
Tengs,, = @ Ty W g, B,
h, ok TF, & 9, ok
_ t.hT t.hT t.hT
Typrk,, =0 b e [a, b] “"Fmt2

So, we get the elements hT% ,—th and hT¥ ,—th of the generalization telephone
numbers Q% (G; X) are

Tprh,, = a"v*[a, b]”, (mod m), Typk , = a”b?[a, ], (mod m).
The proof (ii) is similar to (i), so it’s omitted. O
By Lemma 2.8, we can obtain the following corollary.

COROLLARY 2.9. For k =2% a € N, we have
T | LQGH(Gon; X).

ExAMPLE 2.10. For m = 5 and k = 2, we have
T = a,Ty = b,x3 = ab, x4 = a'b*[a, b, x5 = a'b?|a, b]?, v = a®b*[a, b]?,
x7 = a'®a, b’ = e, ..., xoq = a'b3[a, b]*, xo5 = a'b?[a, b, xos = a®b*[a, b]?, . . ..
We have x5 = 295 and xg = 9. Therefore, LQ%(G5; X) = 20 and hT2|LQ3%(Gs; X).

In Table 1, by using the software Maple 18, we calculate some the period of
generalization telephone numbers Q%(G,,; X).

TABLE 1. The period of generalization telephone numbers Q% (G.,; X).

m | LQ3(Gmns X) | W3, [ LQE(Gons X) [ T, [ LQ5 (G X) | WT3y || LQT67(Grns X) | W 61
2 2 2 2 2 2 2 2 2
3 6 6 6 6 6 6 6 6
4 8 8 8 8 8 8 8 8
5 20 20 10 10 20 20 5 5
6 6 6 6 6 6 6 6 6
7 21 21 21 21 7 7 21 21
8 8 8 8 8 8 8 8 8
9 18 18 9 9 18 18 9 9
10 20 20 10 10 20 20 20 20

We finish this section with an open question as follows:
Prove or disprove, for every k = 2% o € N,

LQ3(Gom; X) = W,
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1. Introduction

Let all Sylow subgroups of G' be cyclic, then by [1, Theorem 5.16] we can write
G = @'Y, where GG’ is a cyclic Hall subgroup and Y is cyclic too. If S-G is
nilpotent, then S = LK where K < G’ and L < Y. As S is nilpotent and G’ is a
Hall subgroup, thus (|L|,|K|) = 1, so [K, L] = 1. Therefore S is cyclic. So every
non-normal nilpotent (in particular abelian) subgroup of G' will be cyclic. But the
converse does not hold, that is, if all non-normal nilpotent (in particular abelian)
subgroups of GG are cyclic, necessarily Sylow subgroups are not cyclic.

A finite non-Dedekind group G is called an N AC-group (N NC-group) if all of
whose non-normal abelian (nilpotent) subgroups are cyclic.

The authors in [2], provide the complete characterization of finite non-nilpotent
NNC-groups. In [3], Zhang and Zhang, gave the classification of N AC-p-groups.

The purpose of this paper is to investigate the structure of finite non-Dedekindian
N AC-groups such that containing at least a non-cyclic Sylow subgroup.

In this paper we use (Jan, Dan and Zp. to denote the generalized quaternion
group of order 2", the dihedral group of order 2" and the cyclic group of order p”,
respectively. Our notations are standard and can be found in [1].

Throughout this paper we used the following notations for the minimal non-
abelian p-groups which are not isomorphic to Qs.

Mp(m’n) = <Cl,b | apm - bpn = 17(lb = a1+pm71>)
where m > 2.
My(m,n,1) = {a,boc| @ = 8" =& = 1, [a,b] = ¢, [ea] = [e,b] = 1),

where m > n, and if p = 2, then m +n > 3.
In the following theorem Zhang and Zhang, give the structure of non-abelian
N AC-p-group of odd order.

THEOREM 1.1. [3, Theorem 3.3] Assume G is a finite non-Dedekindian p-group
and p 1s an odd prime. Then all non-normal abelian subgroups of G are cyclic if
and only if G is one of the following groups.

*Speaker
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(i) My(m,n), where m > 2.
(i) M,(1,1,1) % Cyn.
(iii) Py = {(a,b|a® = = 1,03 = a3, [a,b] = ¢, [c,a] = a3, [c,b] = 1).

The group Fg; is a 3-group of maximal class of order 81.

2. NAC-Groups with an Abelian Sylow Subgroup

In this section we show that the center of an N AC-group is cyclic and then we
characterize the structure of N AC-groups with an abelian Sylow subgroup.

THEOREM 2.1. The center of any non-nilpotent N'AC-group is cyclic.

THEOREM 2.2. Let G be a non-Dedekindian nilpotent group. Then G is N AC-
group if and only if G is isomorphic to one of the following groups:

(i) Q x C, where Q % Qg is non-abelian N AC-2-group,
(ii) @ x P x C, where P is non-abelian N AC-p-group of odd order and Q is
cyclic or Q = Qs,
where C' 1s cyclic Hall subgroup of odd order.

THEOREM 2.3. Let G' be a non-nilpotent group with a non-cyclic abelian Sylow
2-subgroup. Then G is an N AC-group if and only if G = ((Zy X Z3) X C) X Zzm,
where C' is a cyclic {2,3}'-Hall subgroup.

We observed that in Theorem 2.3, if ), the Sylow 2-subgroup of G is non-cyclic
abelian, then it is of type (2,2). Actually because the center of a non-nilpotent N AC-
group is cyclic, so @ N Z(G) = 1, by Mashke’s theorem. Therefore no subgroup of
@ is normal in G. We now extend this problem to the abelian Sylow p-subgroups of
odd order.

THEOREM 2.4. Let non-nilpotent group G with a non-cyclic abelian Sylow sub-
group P of odd order. Then G is N AC-group if and only if G is isomorphic to one
of the following groups.

(i) If P has a subgroup which is non-normal in G, then G has one of the fol-

lowing structures.
(i-1) G 2 (PxC)xH, where any Sylow subgroup of H is cyclic or generalized
Quaternion.
(i-2) G = Qx(PxC)xH, where H is cyclic Hall subgroup and Q € Syls(G)
18 cyclic or @ = Qg.
In all cases C' is cyclic normal Hall subgroup of odd order, P = Z, X Z, is
the only non-cyclic abelian Sylow subgroup of G and H acts irreducibly on
P.

(i) If any subgroup of P is normal in G, then G = N x H, where N is Dedekin-
dian Hall subgroup of G and any Sylow subgroup of H is cyclic or generalized
Quaternion. We can assume that p is the smallest prime factor of |G| such
that G has a subgroup of type (p,p). Also any prime factor of |H| is a divisor

of p— 1.
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COROLLARY 2.5. Let G be a non-nilpotent N'AC-group such that all Sylow sub-
groups of G are abelian. Then G has one of the following structures.

(i) G is non-abelian meta-cyclic group such that G' is cyclic Hall-subgroup.
(i) G = ((Zy x Zs) X C) Xt Zgm, where C is a cyclic {2,3}'-Hall subgroup.
(ili) G = ((Z, x Z,) x C) x H, where p is odd, C" and H are cyclic Hall subgroups
and H acts irreducibly on Z, X Zy,.
(iv) G = (P x C) x H where P is non-cyclic abelian Sylow p-subgroup of odd
order, C' is abelian and H s cyclic Hall subgroup. Also every subgroup of P
15 H-invariant.

3. NAC-Groups with Non-Abelian Sylow Subgroup

Section 2, is shown that if A AC-group contains a subgroup of type (p, p), then for
any 2 < q # p, Sylow ¢-subgroup is abelian. Therefore, if an N AC-group contains
one non-abelian Sylow subgroup of odd order, then other Sylow subgroups are cyclic
or Quaternion (ordinary or generalized). Hence G can only contain one non-abelian
Sylow subgroup of odd order.

In this section we characterized the N AC-group G with non-abelian Sylow sub-
group. By Theorems 2.3 and 2.4, in the following we can assume that G is not
contain a non-cyclic abelian Sylow subgroup. First we assume that a non-abelian
Sylow subgroup is of odd order, next that all Sylow subgroups of odd order are
cyclic.

THEOREM 3.1. Assume that the group G contains a non-abelian non-normal
Sylow subgroup of odd order, P say, and Q € Syls(G). Then G is N AC-group if
and if G = Q x C' x P, where C is the normal cyclic {2, p} -Hall subgroup of G, Q
15 either cyclic or Q = Qg and P is one of the following groups.

(i) My(m,1) = Zym X Z,, where m > 2.

(i) Psy = (a,b,c|a® =3 =1,a% =V, [a,b] = ¢,[c,a] = a®,[c,b] = 1).
Furthermore Cp(C) = T where T = (a?,b) if P = M,(m,1) and T = (b,c) if
P = Py

THEOREM 3.2. Assume that the group G contains a non-abelian normal Sylow
subgroup of odd order, P say, and Q € Syly(G). Then G is N AC-group if and if G
is one of the following groups.

(i) G=Q x (P xC)x H, where Q is cyclic or Q = Qs.

(i) G=(PxC)xH,if Q4 G.

Where C' is the cyclic normal Hall subgroup of G, any Sylow subgroup of H s either
cyclic or of Quaternion type and P is one of the groups listed in Theorem 1.1. Also
all non-cyclic abelian subgroups of P are H-invariant and any prime factor of |H|
15 a diwisor of p — 1.

Furthermore, let L- P be of type (p,p), then Cq(L) = coreq(Q) I G is Dedekin-
dian and Cy(L) = coreq(H) <G is cyclic. Also for any K - H which is non-normal
in G, Cp(K) is cyclic.

Finally we assume that G does not contain any non-cyclic Sylow subgroup of
odd order.
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THEOREM 3.3. Let G be a non-nilpotent group such that whose odd order Sylow
subgroups are cyclic. Assume that Q) is a non-abelian non-normal Sylow 2-subgroup
of G. Then G is N AC-group if and only if G is isomorphic to one of the following
groups.

(i) G = N % Q, where N 1is cyclic of odd order and Q) is one of the following
group, that acts by inverse on N.
(i-1) (a,b,c|a® b*a*, 2, [a, b]c, [c, alat, [c, b))
(i-2) Mayer2 the modular 2-group of order 272, where £ > 2.
(i-3) {a,c|a?,a® ", [a, ca?), where £ > 2.

(ii) G = N % Qan, where N is meta-cyclic subgroup of odd order.

(iii) G = N x (QR), where N is meta-cyclic {2,3}'-Hall subgroup of G, Q = Qg
or Qg and R = Zsn for some n. Also for any K-QR, if K 4 G, Cy(K) is
cyclic. If Q = Qg then QR = (Qs X R) otherwise QR contains a subgroup
K of index 2, such that K = Qg X R.

(iv) G contains a subgroup Gy such that |G : G1| <2 and Gy = Z x SL(2,q) for
some prime number q and all Sylow subgroups of Z are cyclic.

THEOREM 3.4. Let G be a non-nilpotent group such that whose Sylow subgroups
of odd order are cyclic and whose Sylow 2-subgroup is non-abelian and normal. Then
G is NAC-group if and only if G = (Q» x C') X H, where H is Hall subgroup with
cyclic Sylow subgroups, C' is a cyclic Hall subgroup.
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1. Introduction

By a pair of groups, we mean a group G and a normal subgroup N. G. Ellis used
pairs of groups to extend the concepts of capability, Schur multipliers and central
series of groups in an interesting way (see [1, 2]). We recall that a commutator
subgroup [N, G] is the subgroup generated by the commutators [n,g] = n~'n9, for
all g € G and n € N and also for a pair (G, N) of groups, the center subgroup
and the second center subgroup, denoted by Z(G, N) and Zy(G,N) respectively,
are defined as follows:
B g Zy(G,N) G N
Z(G,N) ={z € N|z = z,Vg € G}, 2GN) Z(Z(G,N)’ Z(G,N))'

For a pair (G, N) of groups, a considerable problem is finding the relationship
between the commutator subgroup [V, G| and the central factor group N/Z(G, N).
This problem goes back to a famous classical theorem due to I. Schur [9], which
states that for a group G the finiteness of G/Z(G) implies the finiteness of G’. The
infinite extra special p-groups (for an odd prime p) shows that the converse of Schur’s
theorem does not hold, in general. B.H. Neumann [6] provided a partial converse of
the Schur’s theorem by proving that if G is finitely generated by k elements and G’
is finite, then G/Z(G) is finite and |G/Z(G)| < |G'|*. Recently P. Niroomand and
M. K. Yadov presented interesting results which generalize the Neumann’s theorem
(see [7, 10]).

Another modification of the converse of the Schur’s theorem may be concluded
from a more general theorem of P. Hall (see [3, Theorem 2]), as follows:

For a group G, if G' is finite then G/Z5(G) is finite.
The first explicit bound for the order of G/Z5(G) in terms of the order of G’ was
given by I.D. Macdonald [5], in 1961. He proved that for a group G, if G’ is finite
of order n, then |G/Zy(G)| < nlogzn(+logzn),

Considering the modifications of the converse of Schur’s theorem, finding upper
bounds for the orders |G/Z(G)| and |G/Z3(G)| in terms of |G|, is a noticeable and
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interesting problem. I. M. Isaacs and K. Podoski and B. Szegedy gave different
answers for this problem (see [4, 8]).

In the present research, we generalize the result of [8] for pairs of groups. For a
group G, we denote by rank(G), the minimal number r such that every subgroup of
G can be generated by r elements. In this article, for a pair (G, N) of finite groups,
we give an upper bound for |N/Zy(G, N)| in terms of |[N, G]| and rank(G").

2. Main Results

We first state some lemmas which are needed to prove the first main result of the
paper.

LEMMA 2.1. Let (G,N) be a pair of groups. Then Zy(G,N) < Cn(G') and
Cn(G") is a nilpotent group of class at most 2 and every Sylow p-subgroup of Cn(G")
1s normal in G.

PROOF. Applying the Three Subgroup Lemma, we have [G,G,Zy(G,N)] <
[Z5(G,N),G,G] = 1 and also [Cy(G"),Cn(G"),G] < [G,Cn(G"),Cn(G")] = 1.
These implies that Zy(G,N) < Cn(G’) and Cn(G’) is a nilpotent group of class
at most 2. Let P be a sylow p-subgroup of Cy(G’). Since Cn(G') < G and P is

characteristic in Cy(G"), we conclude that P < G. O
LEMMA 2.2. [8, Lemma 10] Let H and K be two subgroup of a group G, such
that K <G and H can be generated by d elements. Then
K : Cx(H)| < |[H, K]|".
LEMMA 2.3. [8, 9] Let A be a finite abelian p-group with rank(A) =r. Let S be

a collection of subgroups of A such that NS = 1. Then there exists a subset R of S
such that |R| <1 and NR = 1.

THEOREM 2.4. Let (G, N) be a pair of finite groups. Suppose that Z = Z (G, N)N
[N,G] and rank(|N,G|/Z) = r. Then
[V, G]
Z
PROOF. Let p be a prime divisor of |Cy(G’)| and P be Sylow p-subgroup of
Cn(G"). Tt is easy to see that P N[N, G| is an abelian group and

ﬂ Cpm[Nyg]({l?) =PNZ.

ICn(G") : Za(G, N)| < |

| T

zeG
Assume A = PN[N,G]/PNZ and S = {Cpnan,g(x)/PNZ|x € G}. Then by Lemma
2.3, there exist elements x1,...,z; with [ < Tank(P;[éVéG]) < r, such that
l
(1) m CPH[N,G]<I1'> =P M Z.

i=1
Put H = (z1,...,2) and M/Z = Cq/z(HZ/Z). Then [M, H| < Z. This implies
that [M N P,H,G] = 1. Also, P < Cn(G’), and so [H,G,M N P] < [G',P] = 1.
Hence, applying the Three Subgroup Lemma, we have [M N P,G, H] = 1. Then by
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(1) we have [ M N P,G,H] < Coc(H)NPN[N,G]=PNZ < Z(G,N). It follows
that M NP < Zy(G,N)N P. Then by Lemma 2.2, we have
|P: PNZy(G,N)| < |P:PnNnM|,
= |P/Z: Cpzz(HZ]Z),

1HZz/z,Pz/Z],
I[N,G|/ZnPZ/Z|",
(LN, G]/Zlp)",
where |[N, G]/Z|, is the p-part of |[N, G]/Z|.

By Lemma 2.1, Cy(G") is nilpotent. So we can consider the unique Sylow p-

subgroups of Cn(G’) corresponding to prime divisors py,...,p; of |[Cn(G")|. Then
we have

<
<

Cn(G): Z2(G.N)| <[] 1B BinZa(G N,

1<i<t

< Tluw.cyz,).

1<i<t
— VGl
O
COROLLARY 2.5. Let (G, N) be a pair of finite groups, and rank(G') =r. Then
IN: Z(G V)| < |IN, G
PRrROOF. Applying Lemma 2.2 and Theorem 2.4, we conclude that

IN: Zy(G,N)| = |N:Cn(G")||CN(G"): Z3(G, N),
< |IN.GN NG
< [[V.GIP
O
Acknowledgement

I would like to thank my friends, Dr. Azam Hokmabadi and Dr. Azam Pourmirzaei
for all their helps.

References

. G. Ellis, Capability, homology, and central series of a pair of groups, J. Algebra 179 (1996) 31—46.

. G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures 6 (3) (1998) 355-371.

. P. Hall, Finite-by-nilpotent groups, Proc. Cambridge Phil. Soc. 52 (1956) 611-616.

. I. M. Isaacs, Derived subgroups and centers of capable groups, Proc. Amer. Math. Soc. 129 (2001) 2853-2859.

. I. D. Macdonald, Some ezplicit bounds in groups with finite derived groups, proc. London math. Soc. 11 (1961)
23-56.

. B. H. Neumann, Groups with finite classes of conjugate elements Proc. London. Math. Soc. 1 (1951) 178-187.

. P. Niroomand, The converse of Schurs theorem Arch. Math. 94 (2010) 401-403.

. K. Podoski and B. Szegedy, On finte groups whose derived subgroup has bounded rank, Israel J. Math. 178 (2010)
51-60.

9. I. Schur, Untersuchungen ber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen

(German) J. Reine Angew. Math. 132 (1907) 85-137.

OU s W N~

w3 o

253



F. Mirzaei

10. M. K. Yadav, A note on the converse of Schurs theorem, (2010). arXiv:1011.2083v2

E-mail: fa.mirzaei@pnu.ac.ir

254


mailto:fa.mirzaei@pnu.ac.ir

The 51** Annual Iranian Mathematics Conference University of Kashan, 15-20 February 2021

Power Graphs Based on the Order of Their Groups

Mahsa Mirzargar*
Faculty of Science, Mahallat Institute of Higher Education, Mahallat, I. R. Iran

ABSTRACT. The power graph P(G) of a group G is a graph with vertex set G, where two vertices
u and v are adjacent if and only if u # v and u™ = v or v = w for some positive integer m.
The present paper aims to classify power graphs based on group orders, which can be a new
look at the power graphs classification. We raise and study the following question: For which
natural numbers n every two groups of order n with isomorphic power graphs are isomorphic?
We denote the set of all such numbers by S and consider the elements of S. Moreover, we show
that if two finite groups have isomorphic power graphs and one of them is nilpotent or has a
normal Hall subgroup, the same is true with the other one.

Keywords: Power graph, Conformal groups, Nilpotent group.

AMS Mathematical Subject Classification [2010]: 05C12, 91A43, 05C69.

1. Introduction

There are many different ways to associate a graph to the given group, including
the commuting graphs, prime graphs, and of course Cayley graphs, which have a
long history and applications. Graphs associated with groups and other algebraic
structures have been actively investigated since they have valuable applications and
specially are related to automata theory [6, 7]. The rigorous development of the
mathematical theory of complexity via algebraic automata theory reveals deep and
unexpected connections between algebra (semigroups) and areas of science and en-
gineering.

Let G be a finite group. The undirected power graph P(G) is the undirected
graph with vertex set GG, where two vertices a,b € G are adjacent if and only if a # b
and a™ = b or b™ = a for some positive integer m. Likewise, the directed power
graph ?(G) is the directed graph with vertex set GG, where for two vertices u,v € G
there is an arc from a to b if and only if a # b and b = a™ for some positive integer
m. In [1] you can see a survey of results and open questions on power graphs, also it
is explained that the definition given in [5] covers all undirected graphs as well. This
means that the undirected power graphs were also defined in [5] for the first time
and used only the brief term power graph, even though they covered both directed
and undirected power graphs. Cameron proved in [3], if G; and G5 are finite groups
whose undirected power graphs are isomorphic, then their directed power graphs
are also isomorphic. Clearly, the converse is also true. Clearly G = H implies
P(G) = P(H). The converse is false for finite groups in general. For example, if
p is an odd prime and m > 2, besides the elementary abelian group H of order
p™, there are non-abelian groups G of order p™ and exponent p, so H and G are
non-isomorphic but have isomorphic power graphs. On the other hand, it is shown
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in [2, 9] that if both G and H are abelian then P(G) = P(H) implies G = H. Also
in [9], it is proved that if G is one of the following finite groups:

(1) A simple group,

(2) A cyclic group,

(3) A symmetric group,

(4) A dihedral group,

(5) A generalized quaternion group,

and H is a finite group such that P(G) = P(H) then G = H.

Following [8, 10], two finite groups G and H are said to be conformal if and
only if they have the same number of elements of each order. Such groups need not
be isomorphic (see the above example of groups of exponent p). The relevance of
this concept to power graphs is due to the fact that, as proved by Cameron [3], two
finite groups with isomorphic undirected power graphs are conformal. Note that the
converse is not true. For example, two groups of order 16 with the same numbers
of elements of each order, e.g. Cy x Cy and Cy x Qg are SmallGroup(16,2) and
SmallGroup(16,4) in GAP respectively [4]. Their power graphs are not isomorphic.
In fact, in the group Cy x Cy, each element of order 2 has four square roots, but in
C5 X Qg, the involution in ()3 has twelve square roots and the other two have none.
In [8], an algorithm is described to find the number of elements of a given order in
abelian groups, so if G and H are finite conformal abelian groups, then G = H.

In [10], the following question was investigated:

Question: For which natural numbers n every two conformal groups of order n are
isomorphic?

In [10], the set of all such numbers was denoted by S and odd and square-free
elements of S were characterized.

In this paper we raise another question along the same lines:

Question: For which natural numbers n, every two groups of order n with isomor-
phic power graphs are isomorphic?

Let us denote the set of all such numbers by S. Since two finite groups with
isomorphic power graphs are conformal, it is easy to see that S C S.

There is not a one to one function between groups and power graphs. Therefore,
the power graphs do not always determine the groups. An interesting study would
be to find out for which groups G and H, P(G) = P(H) implies G = H. The present
paper aims to classify power graphs based on group orders, which can be a new look
at the power graphs classification. Moreover, the concept of conformal groups and
the order of the elements of a group play an important role in the results of this
paper and guide us to classify power graphs of nilpotent groups and groups which
have a normal Hall subgroup. The authors believe that it is possible to classify
power graphs based on the order of their groups. This topic can continue and leads
many open questions motivated by classification problems for future work.

2. Main Results

In this section, we study the set S, often exploiting methods and results already
used for S.
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In [10], Lemma 1, it is proved that if p and ¢ are prime and ¢|(p — 1), then
p?q € S if and only if ¢ = 2. Since S C S, the following result is straightforward.

PROPOSITION 2.1. If p is an odd prime number, then 2p® € S.

Note that 8 € S, because the two non-abelian groups of order 8 are either the
dihedral group Dg or the quaternion group (Jg, and the number of elements of order
4 in these groups is 2 and 6, respectively. There are three abelian groups of order 8,
which are pair-wise non-conformal and non-conformal to Dg or (gs. Therefore 8 € S
and 8 € S.

The following result shows that S contains natural numbers with an arbitrary
number of prime factors.

THEOREM 2.2. Ifn & S and (n,k) =1, then nk ¢ S.

LEMMA 2.3. Let G be a 2-group and A be an elementary abelian 2-group. Two
vertices (a,x), (b,y) of the graph P(G x A) are adjacent if and only if one of the
following holds:

1) 2=y =1 and b is a power of a,

2) x =y #1 and b is an odd power of a,

3) x#1,y=1 and b is an even power of a,
4) x =1,y # 1 and a is an even power of b.

THEOREM 2.4. Let n = 2%p{" ---p2 (r > 0). If g > 4 or there exists i # 0
such that a; > 3, thenn & S.

COROLLARY 2.5. Every odd element of S is cube-free.

As mentioned above, we have S C S. On the other hand, when we look closely
at computer programming, we notice that many small numbers belong to both S
and S or to neither. It is then natural to ask whether this inclusion is indeed strict.

THEOREM 2.6. The set S\ S is non-empty. Its smallest element is 72.

Again exploiting the necessary condition of conformality, we are going to show
here some situations where a property of a group G is inherited by all groups with
the same power graph.

THEOREM 2.7. If G and H are conformal and H is nilpotent, then also G is
nilpotent.

COROLLARY 2.8. If P(G) = P(H) and H is nilpotent, then also G is nilpotent.

A subgroup of a finite group is said to be a Hall subgroup if its order and index
are relatively prime.

THEOREM 2.9. Let G and H be conformal groups. If H has a normal Hall
subgroup of order m and G s solvable, then also G has a normal Hall subgroup of
order m.

COROLLARY 2.10. If P(G) =2 P(H), H has a normal Hall subgroup of order m,
and G is solvable, then also G has a normal Hall subgroup of order m.
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1. Introduction

Universal coalgebra is one of the most important branches of mathematics that has
been widely used in various fields of theoretical computer science such as transition
systems, automata, object oriented specification, and lazy functional programming
languages, in a common and general explanation. The study of a certain subject
in category theory, is called injectivity, is interested to many people, including the
author who had worked with injectivity in the category of F-coalgebras. In this
paper, we show that the notion of injective F-coalgebra in the category Setg is
well-behaved in the sense of the paper [2].

Now let us recall some necessary notions in this paper. The readers may consult
[1, 5, 7] for the facts about category theory and universal F-coalgebra used in this
paper. Here we also follow the notations and terminologies used there.

Given a functor F': Set — Set, a coalgebra of type F', or simply, an F'-coalgebra
is a pair (A, a4) consisting of a set A and a map oy : A — F(A). The set A is called
the underlying set or carrier of the coalgebra, « is often called the structure map of
A, and F is called the type of it. An F-homomorphism between two F-coalgebras
(A,aq), (B,ap) isamap f: A — B with F(f)oas = ago f. The class of F-
coalgebras together with the F-homomorphisms form a category which is denoted
by SetF.

For every F-coalgebra (A, aq), an F-subcoalgebra of (A, a4) is a subset B of
A with a structure map ap such that the inclusion map ¢ : B — A is an F-
homomorphism. We write (B, ap) < (A, as) whenever (B, ap) is an F-subcoalgebra
of (A, ax). It is worth noting that with the natural structure maps apary = F(f) o
o o f~1and ap-1py = F(f) ' oapo f, for every F-homomorphism f: A — B
between F-coalgebras, (A, ax) < (A,aq), and (B, ap) < (B, ap), the inclusion
maps f(A') < B and f~!(B’) — A are F-homomorphism.

A terminal F-coalgebra is an F-coalgebra (0O, ag) for which there exists precisely
one F-homomorphism 04 : A — O, so-called terminal F-homomorphism, for every
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F-coalgebra (A, «). Terminal F-coalgebras are uniquely determined up to isomor-
phism, so we can speak of “the” terminal F'-coalgebra. The initial F-coalgebra is
dually defined. In Sety, the initial object always exists, it is the empty F-coalgebra,
see [5], while the terminal F-coalgebra need not always exist. But in [7], Theorem
10.4, it is shown that for every bounded functor F', the terminal F-coalgebra ex-
ists. A functor F'is called bounded if there is some cardinality x so that for every
F-coalgebra (A, ay4) and every a € A one can find an F-subcoalgebra (U,, ay,) of
(A, aq) such that the cardinal number of U, is less than or equal to x and a € U,.
Throughout this paper we only consider coalgebras of type F' for which F'is bounded
and preserves weak pullbacks; i.e. transforms weak pullbacks into weak pullbacks.

For every (A,aq) € Setg, a terminal F-subcoalgebra (B,ap) of (A, ay) is an
F-subcoalgebra of A such that the terminal F-homomorphism 6g is an injection
map.

The category Setg is cocomplete, in particular, the coproduct of a family
{(Ai; aa,) Yier is the disjoint union of A;’s, (3,c; Ai, oy, 4,), and it is called sum.

Since we have assumed that F' preserves weak pullbacks, an arbitrary intersection
of F-subcoalgebras is again an F-subcoalgebra, [7]. So for every F-coalgebra A and
every a € A, we have < a >= [|{B < Ala € B} with the structure map a4|<q> is
an F-subcoalgebra of A.

It is worth noting that, in the category Sety the F-epimorphisms are onto F-
homomorphisms. Also, the embeddings are one-to-one F-homomorphisms and F-
monomorphisms are left cancelable F-homomorphisms and they do not necessarily
coincide. But here since F' preserves weak pullbacks, they coincide, see [7]. When-
ever the structure map is clear from the context, we shall use the same notation for
a coalgebra and for its carrier.

A k-source is an F-coalgebra P together with a family {¢x : P — Ag}rex of
F-homomorphisms. A k-simulation R between F-coalgebras { Ay }rex is a subset of
the cartesian product {Ag}rex, XkenAr, on which an F-coalgebra structure can be
defined so that all projections 7, : R — A become F-homomorphisms.

An equivalence relation y on an F-coalgebra A is called a congruence on A
if x is the kernel of an F-homomorphism f : A — B. We denote the set of all
congruences on A by Con(A) which forms a bounded lattice in which the diagonal
relation Ay = {(a,a) | a € A} is the smallest element.

A major theme in universal coalgebra is the study of covariety. Here a covariety
is a class of F-coalgebras closed under the operators H (F-homomorphic images),
S (F-subcoalgebras), and 3 (sums).

Let X be a set. We refer to the elements of X as colors and to every set map
from an F-coalgebra A to X as a coloring. An F-coalgebra Cx(X) together with
a coloring ex : Ck(X) — X is called cofree over X, with respect to a class K
of F-coalgebras, if the following universal property is valid for them. For every
F-coalgebra A in K and for any coloring ¢ : A — X there exists a unique F-
homomorphism @ : A — Ck(X) such that ¢ =ex o @.
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We write C(X) for Csetp(X).

LEMMA 1.1. [7]
i) Every covariety CV has a cofree Cey(X) contained in C(X), for every set
X.

ii) Fvery sub-covariety CV' of covariety CV has a cofree Coyy(X) contained in
Cev(X), for every set X.

Now we use the terminology of Banaschewski [2, 3, 4] and we give the following
definitions in the context of F-coalgebras.

DEFINITION 1.2. An F-coalgebra @ is injective if for every embedding i : B — A
and every F-homomorphism f : B — @, there exists an F-homomorphism f: A —

@ such that foi= f.

Obviously, the definition of injectivity is up to isomorphism, i.e. every F-
coalgebra in the definition of injective F'-coalgebra may be replaced by an isomorphic
F-coalgebra. Hence we can assume that ¢ is the inclusion map rather than embed-
ding.

For a given subclass of F-monomorphisms M, an M-morphism m is called to
be M-essential if for every F-homomorphism f: B — C, fm € M implies f € M.

One says that injectivity relative to a class M is well-behaved if the following
propositions are established.

PrOPOSITION 1.3 (First well-behaviour Theorem [2]). For an F-coalgebra A,
the following conditions are equivalent:
i) A is M-injective.
ii) A is M-absolute retract.
iii) A has no proper M-essential extension.

PROPOSITION 1.4 (Second well-behaviour Theorem [2]). Every F-coalgebra A
has an M-injective hull.

PROPOSITION 1.5 (Third well-behaviour Theorem [2]). The following conditions
are equivalent, for an M-morphism m : A — B in Setg.
i) B is an M-injective hull of A.
ii) B is a mazimal M-essential extension of A.
iii) B is a minimal M-injective extension of A.

In [2] Banaschewski has proved that the following notions and conditions are
necessary for having well-behaved M-injectivity in a category C.
B; - The class M is composition closed.
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By - The class M is isomorphism closed and left regular; that is, for f € M
with fg = f we have ¢ is an isomorphism.

B3 - C satisfies Banaschewski’s M-condition, meaning that for every M-
homomorphism f : A — B in C there exists a homomorphism ¢ : B — C such
that g o f is M-essential.

By - C satisfies M-transferability conditions; that is, pushouts preserve M-
monomorphisms.

Bs - C has M-direct limits of well ordered direct systems.

Bg - C is M*-cowell powered; that is, for every object A € C, the class

{m:A— B| B e€Obj(C), mis an M-essential monomorphism},

up to isomorphism, is a set.

2. Injectivity of F-Coalgebra

In this section, we discuss the notion of injectivity in Sety and give some properties
concerning injective F-coalgebras to identify this kind of F'-coalgebras. We also show
that the notion of injectivity in the category of F-coalgebras well-behaves.

It is easy to check that every injective F-subcoalgebra of an F-coalgebra A is

a retract of A and cofree F-coalgebras and terminal F-coalgebras are injective. In
[6] it is shown that how one can construct the cofree F-coalgebra over an arbitrary
set X, when F' is bounded. So, for every F-coalgebra A, using ¢ = id, in Diagram
(1), we get the embedding @ : A — C(A). Therefore every F-coalgebra is embedded
into an injective F-coalgebra. Also, for every terminal F'-coalgebra ©, every F-
homomorphism f : ©® — A is embedding. Now we have the following theorem.

THEOREM 2.1. Ewvery injective F-coalgebra contains a copy of terminal F'-
coalgebra.

Immediately, using the above theorem we have the following corollary.

COROLLARY 2.2. Every cofree F-coalgebra C(X) over a non-empty set X, con-
tains a copy of terminal F'-coalgebra.

DEFINITION 2.3. An F-subcoalgebra B of an F-coalgebra A is called large in A,
if A is an essential extension of B. We denote this situation by B C" A.

LEMMA 2.4. A non-empty F-subcoalgebra B of an F-coalgebra A is large in A
if and only if for every congruence x # Ay on A, x N B X B # Apg and it is a
congruence on B.

One can easily check that:

e Let B B'<A. Then BC' Aifand only if B C' B’ and B’ C' A.
e If B C' A and B is embedded in an injective F-coalgebra (), then A can be
embedded in Q.

Now we give the following theorem.

THEOREM 2.5. Let B be a proper retract of A; that is, B S A and the inclusion
map t: B — A has a left inverse m : A — B. Then B can not be large in A.
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LEMMA 2.6. For every F-coalgebra A and every congruence x € Con(A), there
exists a maximal congruence k with k Ny = Ay.

LEMMA 2.7. Let A be an F-coalgebra and ® = {(B;, ap,)}icr be a family of
disjoint F'-subcoalgebra of A. Then there exists a structure map oa/,, on A/os =
(Xier0a(Bi)) + A\ (UierBi) such that the map mas,, : A — Ao, defined by
TA/ oy (a) =a, fora € A\ (UierB;), and TA oy (a) = 1;(04(a)), for a € B;, in which
i 04(B;) = Afo, is the inclusion map, is an F-epimorphism.

COROLLARY 2.8. Let CV be a covariety and CV' be a subcovariety of CV. Then
there exists a structure map acy,(x) on Cey(X) == Cev(X)/0(ce(x)y such that
Tex,(X) - Cev(X) = Coy(X) defined by chv(x)(c) = ¢, for c € Ceyp(X) \ Cov (X)),
and ez, (x)(¢) = Ocey,(x) (), for ¢ € Coyr (X), is an F-epimorphism.

DEFINITION 2.9. For every F-coalgebra A and family ® = {B;}ic; of F-
subcoalgebras of A, the congruence g, = ker(may,, ) is called the Rees congruence
generated by ® and A/p, is called the Rees factor of A on o,.

REMARK 2.10. If Mono is the class of all monomorphisms in the category Sety,
then Mono is isomorphism closed, by the left cancelability of monomorphisms in the
category Setp. Also Gumm in [5, Lemma 3.7] shows that monomorphisms in the
category Sety is closed under composition and in [5, Lemma 4.6] shows that Setg
satisfies Mono-transferability conditions. Also, by [5, Theorem 4.2], the category
Sety has Mono-direct limits. Finally, since Setg is a subcategory of Set, Setp is
Mono*-cowell powered. So, to prove that injectivity is well-behaviored in Setg, it
is enough to show that Setg satisfies Banaschewski’s condition for monomorphisms
in the category of F'-coalgebras.

Now we give Banaschewski’s condition for monomorphisms in the category of
F-coalgebras, but first, let us note the following Lemma.

LEMMA 2.11. Let B be an F'-subcoalgeebra of an F'-coalgebra A, op be the Rees
congruence generated by B on A and kg be the maximal congruence on A with
kpNoy =As. Then kpN B x B = Ag.

THEOREM 2.12. For every F-homomorphism f : B — A, there is an F-
homomorphism g : A — C' such that g o f is an essential F-monomorphism.

by Theorem 2.12 and Remark 2.10, the class Mono satisfies in conditions B
to Bg. So, the notion of injectivity in the category Setg is well-behaved and every
F-coalgebra A has an injective hull.
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of the subject under discussion are given.
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1. Introduction

All rings in this talk are associative (not necessarily with identity) and all modules
are left modules. Let M be a module over a ring R. A proper submodule P of an
R-module M is a prime submodule of M [5] if for all ideals I of R and submodules
N of M such that IN C P, we have N C P or IM C P. If R is a commutative
ring, this definition is equivalent to: for all » € R and every m € M, if rm € P then
m € P orrM C P. Groenewald and Ssevviiri [6] call this definition as the definition
of a completely prime submodule P of a module gk M. Several authors have discussed
prime submodules in modules over commutative rings, for example in [1, 10]. In
general, the definitions above need not be equivalent. Simple modules and maximal
submodules are always prime but need not be completely prime. This justifies the
study of completely prime submodules in details.

An ideal I of a ring R is a prime ideal if for any ideals A and B of R such that
AB C I, we have A C I or B C I. If R is commutative, this definition is equivalent
to: for any elements a,b € R such that ab € I, we have a € [ or b € I. If R is
not a commutative ring, the later implies the former but not conversely. The later
definition is called the definition of a completely prime ideal of a ring R. If I is a
completely prime ideal of a ring R, then R\ I is a multiplicative system, i.e., closed
under multiplication. This notion is generalized to modules and it is shown that if P
is a completely prime submodule of M, then M \ P is a multiplicative system of M.
If N and P are submodules of M such that N ¢ P, we write (P : N) to mean the
ideal {r€e R:rN € P} and {r € R:rm € P,m € M \ P}. The symbol (m) is the
submodule of kM generated by m € M and R-mod is used to mean the category of
left R-modules.

Following Groenewald and Ssevviiri [8], a proper submodule P of an R-module
M is s-prime if for every ideal I of R, every submodule N of M andr € I,ifr"N € P
for some positive integer n, then N € P or IM < P. Moreover, Groenewald and
Ssevviiri [7] define classical completely prime submodule to be a proper submodule
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P of an R-module M such that for all a,b € R and m € M, if abm € P, then
a(m)y & P or b{(m) & P. Finally, in view of [2, 3] a proper submodule P of an
R-module M is classical prime if for any submodule N of M and ideals A and B of
R such that ABN € P, then AN € P or BN € P. In this talk we give examples of
completely prime submodules. Moreover, the comparison of completely prime and
other primes is done. We review several properties of completely prime modules.
Finally, we give some characterizations of completely prime submodules of a module.

2. Main Results

The main parts of this section are devoted to a definition of a completely prime
submodule of a module and the related results from [6]. In fact, some results similar
to those results valid in prime modules are reviewed. The results presented in this
talk are from [6], unless otherwise stated. Owing to the importance of some results,
they are presented with their proofs. Finally, at the end of this section we give some
outlines for the continuation of the subjects investigated in this talk.

DEFINITION 2.1. A proper submodule P of a left R-module M is called com-
pletely prime if for each a € R and m € M such that am € P, we have m € P
or aM € P. An R-module M is completely prime if the zero submodule of M is a
completely prime submodule of M.

EXAMPLE 2.2. Every torsion-free module is a completely prime module.

DEFINITION 2.3. An R-module M is reduced if for alla € Rand m € M, am =0
implies that (m) NaM = 0.

EXAMPLE 2.4. Any simple module which is reduced is completely prime.

Theorems 2.5 and 2.6 give characterizations of a completely prime submodules
of a module.

THEOREM 2.5. Let R be a unitary ring and P be an ideal of R. Then P is a
completely prime ideal of R exactly if P is a completely prime submodule of rR.

THEOREM 2.6. Let M be an R-module. For a proper submodule P of M, the
following statements are equivalent.

1) P is a completely prime submodule of M.
2) ]f(am) C P foralla € R and m € M, then either (m) & P or (aM) & P.
3) (P:M)=(P:m) forallme M\ P.
4) (P M) is a completely prime ideal of R, and (P :m) = (0:m) = (P : M)

for each m € M \ P.
5) The set {(P:m):m € M\ P} is a singleton.

COROLLARY 2.7. If P is a completely prime submodule of gM, then (P :m) is
a two sided ideal of R for allm € M \ P.

THEOREM 2.8. Let gkM be an R-module. Then we have the following statements.

1) If M is a completely prime module, then M is both classical completely prime
and s-prime module.
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2) If M s a classical completely prime module, then M is a classical prime
module.

3) If M is a s-prime module, then M is a prime module.

4) If M is a prime module, then M is a classical prime module.

PROOF. The assertions (2), (3) and (4) are followed from [7, 8] and [3], respec-
tively. We prove the first assertion, only. Let M be a completely prime module.
We prove that M is a classical completely prime module. Suppose that abm € P. If
m € P, then a(m) C P and b(m) C P. Suppose that m ¢ P. By the definition of a
completely prime submodule, bm € P or aM C P. If aM C P, then a{(m) C P. Now
let bm € P. By the definition of a completely prime submodule, b(m) C bM C P, as
required. Now we prove that M is s-prime. Suppose a"(m) C P for some positive
integer n. Then a™m C P. Since P is completely prime, it is classical completely
prime such that am € a(m) C P. By the definition of a completely prime submodule,
we have aM C Porm € P. O

EXAMPLE 2.9. Let R be a commutative domain and P be a prime ideal of R. If
M = R@® R is an R-module, then 0 & P and P @ 0 are classical completely prime
submodules of M which are not completely prime.

ExAMPLE 2.10. Every simple module is s-prime but it need not be completely
prime.

J. Lambek [9], calls a module symmetric if abm = 0 implies that bam = 0 for all
a,be Rand m € M.

DEFINITION 2.11. Let N be a submodule of an R-module M. Then, N is called
symmetric if abm € N implies that bam € N for all a,b € R and m € M. A module
M is symmetric if its zero submodule is symmetric.

H. E. Bell [4] calls a right (or left) ideal I of a ring R to have the insertion-of-
factor-property (IFP) if whenever ab € I for a,b € R, we have aRb € I.

DEFINITION 2.12. A submodule N of an R-module M is said to have IFP if
whenever am € N for a € R and m € M, we have aRm € N. A module M has IFP
if the zero submodule of M has IFP.

N. J. Groenewald and D. Ssevviiri [7] called a submodule P of an R-module M
to be completely semiprime if for every a € R and m € M such that a®>m € P, we
have a{(m) € P.

ExaMPLE 2.13. Every completely semiprime module satisfies IFP.

THEOREM 2.14. Let M be an R-module. A submodule P of M 1is a completely
prime submodule exactly if it is a prime submodule and has IFP.

EXAMPLE 2.15. Every maximal submodule which is completely semiprime (or
symmetric) is completely prime.

We observe that if M is a reduced module, then it is a symmetric module which
implies that M has the IFP property. Therefore, we have the following corollary.
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COROLLARY 2.16. Let M be an R-module. Then, we have the following state-
ments.
1) M is completely prime if and only if M is prime and reduced.
2) M is completely prime if and only if M is prime and symmetric.
3) M is completely prime if and only if M is prime and has IFP.

If the ring under investigation is commutative, then we have the following the-
orem concerning the equivalent conditions of completely prime submodules of a
module.

THEOREM 2.17. Let M be a module over a commutative ring R. Then, we have
the following statements.
1) M s s-prime exactly if M is prime exactly if M is completely prime.
2) M is classical prime exactly if M classical completely prime.
3) If M is a completely prime module, then M s a classical prime module.

THEOREM 2.18. Let M be a multiplicative module over a commutative ring.
Then, completely prime submodules coincide with classical completely prime sub-
modules

DEFINITION 2.19. Let gM be a module. A nonempty subset S of non-zero
elements of M is called a multiplicative system of g M if for each a € R and m € M
and for all submodules K of M such that (K+(m))NS # 0 and (K +(aM))NS # 0,
then (K + (am)) NS # 0.

THEOREM 2.20. For any proper submodule P of M, and S = M \ P, the
following statements are equivalent.

1) P is a completely prime submodule of M.

2) S is a multiplicative system of M.

3) For all a € R and every m € M, if (m) NS # (0 and (aM) NS # 0, then
{am) NS # .

4) For all a € R and every m € M, such that m € S and (aM) NS # 0, then
am € S.

LEMMA 2.21. Let M be an R-module. Let S € M be a multiplicative system of
M and P be a submodule of M mazimal with respect to the property that PNS = (.
Then, P is a completely prime submodule of M.

PROOF. Suppose that a € R and m € M such that (am) C P. If (m) € P
and (aM) ¢ P, then ((m) + P)NS # 0 and ((aM) + P)N S # 0. Since S is a
multiplicative system of M, ({(am)+ P)NS # (. Since (am) C P, we have PN.S # (),
a contradiction. O

DEFINITION 2.22. Let R be a ring and M an R-module. For a submodule N
of M, if there exists a completely prime submodule containing N, then we define
co.v/N to be the set of all m € M such that every multiplicative system containing
m meets N. We write co.v/N = M, when there are no completely prime submodules
of M containing N.
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THEOREM 2.23. Let M be an R-module and N be a submodule of M. Then,
either co/N equals to M or the intersection of all completely prime submodules of
M containing N, denoted by Beo(N).

PROOF. Suppose that co./N # M. Then, co./N # 0. Moreover, co.s/N and
N are contained in the same completely prime submodules. Clearly, N C co.v/N.
Hence, any completely prime submodule of M containing N contains N. Suppose
P is a completely prime submodule of M such that N C P. Moreover, suppose that
t € co/N. If t ¢ P, then the complement of P, C(P) in M is a multiplicative
system containing ¢. This implies that C(P) N N # (. On the other hand the fact
that N C P implies that C(P) N P = ), which is a contradiction. consequently,
t € P. Hence co.v/N C P as required. Thus, co.v/N C fe,(N). Conversely, assume
that s ¢ co.v/N. then there exists a multiplicative system S such that s € S and
SN N = (. From Zorn’s Lemma, there exists a submodule P containing N which

is maximal with respect to P NS = (). From Lemma 2.21, P is a completely prime
submodule of M and s ¢ P. O

EXAMPLE 2.24. Let R be a domain. Then rR is a faithful completely prime
module.

EXAMPLE 2.25. Let I be a completely prime ideal of R. Then R/I is a completely
prime R-module.

Following [3], we have the following definition of weakly prime submodules of a
module.

DEFINITION 2.26. A left R-module M is called weakly prime module if the
annihilator of any nonzero submodule of M is a prime ideal and a proper submodule
P of M is called weakly prime submodule if the quotient module M/P is a weakly
prime module.

REMARK 2.27. Inspiring by this definition, we may give a definition of weakly
completely prime submodule of a module. Some results similar to those valid in
completely prime modules have been reached recently for weakly completely prime
submodule of a module. However, it should be pointed out that the research for
such submodules is under investigation by the author and not published yet.
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1. Introduction

Let R be a commutative Noetherian ring, a an ideal of R and let N be a non-zero
finitely generated R-module. For a non-negative integer n, the nth symbolic power
of a w.r.t. N, denoted by (aN)™, is defined to be the intersection of those pri-
mary components of a” N which correspond to the minimal elements of Assg N/aN.
Then the a-adic filtration {a" N}, >0 and the a-symbolic filtration {(aN)™}, 5 in-
duce topologies on N which are called the a-adic topology and a-symbolic topology,
respectively. These two topologies are said to be linearly equivalent if, there is an
integer k > 0 such that (aN)™+* C q"N for all integers n > 0. For a prime ideal p
of R, the linearly equivalence of p-adic topology and the p-symbolic topology were
first studied by Schenzel in [10].

Our main point of the present paper concerns an investigation of the linearly
equivalent of the a-symbolic and the a-adic topology topologies on N.

Recall that a prime ideal p of R is called a quintessential (resp. quintasymp-
totic) prime ideal of @ w.r.t. N precisely when there exists q € Assg; N, (resp.
q € mAssgy Ny) such that Rad(aR; + q) = pR;. The set of quintessential (resp.
quintasymptotic) prime ideals of a w.r.t. N is denoted by Q(a, N) (resp. Q*(a, N))
which is a finite set.

We denote by Z the graded Rees ring Rlu, at] := @,cza"t" of R w.r.t. a, where ¢
is an indeterminate and u = t~!. Also, the graded Rees module Nu, at] :== ®pcza" N
over Z is denoted by .4, which is a finitely generated graded Z-module. Then we
say that a prime ideal p of R is an essential prime ideal of a w.r.t. N, if p = qNR for
some q € Q(uZ, V). The set of essential prime ideals of a w.r.t. N will be denoted
by E(a, N).

Also, the asymptotic prime ideals of @ w.r.t. N, denoted by A*(a, N), is defined
to be the set {qN R | q € Q*(uZ, N)}.

In [11], Sharp et al. introduced the concept of integral closure of a relative to
N. The integral closure of a relative to N is denoted by a~®™). In [8], it is shown
that the sequence {Assp R/(a")~™}, 5, of associated prime ideals, is increasing

*Speaker

271



R. Naghipour

and ultimately constant; we denote its ultimate constant value by A*(a, N). In the
case N = R, A*(a, N) is the asymptotic primes A*(a) of a introduced by Ratliff in
[9]. Also, it is shown in [7, Proposition 3.2] that A*(a, N) = A*(a, N).

If (R, m) is local, then R* (resp. N*) denotes the completion of R (resp. N)
w.r.t. the m-adic topology. In particular, for every prime ideal p of R, we denote
Ry and N, the pRy-adic completion of R, and Ny, respectively. For any ideal b of
R, the radical of b, denoted by Rad(b), is defined to be the set {xr € R : 2" € b
for some n € N}. Finally, for each R-module L, we denote by mAssg L the set of
minimal prime ideals of Assg L.

Recall that an ideal b of R is called N-proper if N/bN # 0, and, when this the
case, we define the N-height of b (written height, b) to be
inf{heighty p : p € Supp N NV (b)},

where height y p is defined to be the supremum of lengths of chains of prime ideals
of Supp(NV) terminating with p. Also, we say that an element = of R is an N-proper
element if N/zN # 0.

2. Main Results

Let R be a commutative Noetherian ring, and let N be a non-zero finitely generated
R-module. The purpose of the present paper is to give an investigation of the linearly
equivalent of the a-symbolic and the a-adic topology topologies on N. The main
goal of this section is Theorem 2.4. The following proposition plays a key role in
the proof of the main theorem.

PROPOSITION 2.1. Let a be an ideal of R and let N be a non-zero finitely gen-
erated R-module with dim N > 0. Let p € Supp(N) N V(a). Then the following
conditions are equivalent:

i) p e A*(a, N).

ii) p € A*(ab, N), for any N-proper ideal b of R with height, b > 0.
iii) p € A*(za, N), for any N-proper element x of R with x ¢ Upemassy vP-
iv) p € A*(za, N), for some N-proper element x of R with x & Upemassy nP-

PROOF. (i)==(ii): Let p € A*(a, N) and let b be an N-proper ideal of R such
that height b > 0. Then, in view of [7, Remark 2.4],

p/Anng N € A*(a+ Anng N/ Anng N).
Hence, as by [5, Theorem 2.1],
height y, b = height(b + Anng N/ Anng N) > 0,
it follows from [4, Proposition 3.26] that
p/Anng N € A*(ab + Anng N/ Anng N).

Therefore by using [7, Remark 2.4], we obtain that p € A*(ab, N), as required.
(ii)==-(iii): Let (ii) hold and let x be an N-proper element of R such that
x & UpemASSR yb. Then it is easy to see that heighty 2R > 0, and so according to

the assumption (i), we have p € A*(za, N).
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(iii)==(iv): Since dim N > 0, there exists q € Supp /N such that height q > 0.
Hence q ¢ Upemassy vP» and so there is z € g such that z ¢ Upemassy vP- Conse-
quently, it follows from the hypothesis (iii) that p € A*(za, N).

(iv)%(i): Let = be an N-proper element of R such that & (J,c,,as, vP and
let p € A*(za, N). Then

p/Anng N € A*(za+ Anng N/ Anng N),

by [7, Remark 2.4]. Now, since & & (J,cpase, vP: it 1 €asy to see that x + Anng N
is not in any minimal prime R/ Anng N. Therefore, it follows from [4, Proposition
3.26] that

p/Amng N € A*(a+ Anng N/ Anng N).
Consequently, in view of [7, Remark 2.4], p € A*(a, N), and this completes the
proof. 0

Before we state Theorem 2.4 which is our main result, we give a couple of lemmas
that will be used in the proof of Theorem 2.4.

LEMMA 2.2. [2, Proposition 4.2] Let (R, m) be a local ring and let N be a non-
zero finitely generated R-module such that dim N > 0 and that Assg N has at least
two elements. Then there is an ideal a of R such that m € Q(a, N) \ mAss N/aN.

LEMMA 2.3. Let N be a non-zero finitely generated R-module and let a be an
N-proper ideal of R. Then E(a, N) = mAssg N/aN if and only if the a-symbolic
topology is linearly equivalent to the a-adic topology.

PRrROOF. The assertion follows easily from [6, Theorem 4.1]. O

We are now ready to state and prove the main theorem of this paper which is a
characterization of the certain modules in terms of the linear equivalence of certain
topologies induced by families of submodules of a finitely generated module N over
a commutative Noetherian ring R. We denote by Zg(N) the set of zero divisors on
N, ie., Zr(N):={r € R|rz = 0for some z(# 0) € N}.

THEOREM 2.4. Let N be a non-zero finitely generated R-module. Then the fol-
lowing conditions are equivalent:

i) For every N-properideal b of R, the b-symbolic topology is linearly equivalent
to the b-adic topology.

ii) dim N < 1 and Assg, N, consists of a single prime ideal, for all p €
Supp (V).

PROOF. Suppose that (i) holds. Firstly, we show that dim N < 1. To achieve
this, suppose the contrary is true. That is dim N > 1. Then there exists p € Supp(V)
such that heighty p > 1. Hence p ¢ UquASSRNq, and so there exists z € p such
that © € Uycmass, v 9- Now, since p € A*(p,N) and N # N, it follows from
Proposition 2.1 that p € A*(zp, N). Therefore, in view of [1, Theorem 3.17] we have
p e E(xp,N).

On other hand, since @ & J, cpase, v 05 it Is easily seen that p & mAssg N/zpN,
and so by the assumption (i) and Lemma 2.3 we have p ¢ E(zp, N), which is a
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contradiction. Hence, dim N < 1. Now, we show that Assg, N, consists of a single
prime ideal, for all p € Supp(V). To do this, if dim N = 0, then dim N, = 0. Hence
Assg, N, = {pR,}, as required. Consequently, we have dim NN, = 1. Now, if Assp, IV,
has at least two elements, then in view of Lemma 2.2 there exists an ideal aRR, of
R, such that pR, € Q(aR,, Ny) but pR, € mAssgp, N,/aR,. Therefore, in view of [1,
Lemma 3.2 and Theorem 3.17], p € E(a, N)\ mAss N/aN, which is a contradiction.
In order to show the implication (ii)==-(i), in view of Lemma 2.3 it is enough
for us to show that E(b, N) = mAss N/bN. To this end, let p € E(b, N). By virtue
of [1, Lemma 3.2], we may assume that (R, p) is local.
Firstly, suppose dim N = 0. Then it readily follows that p € mAss N/bN, as re-
quired. So we may assume that dim N = 1. There are two cases to consider:

Case 1. b € Zg(N). Then grade(b, N) > 0. Since dim N = 1, it follows that
height 5y b = 1, and so b+ Anng N is p-primary. Hence p € mAss N/bN, as required.

Case 2. Now, suppose that b C Zr(N). Then there exists z € Assg N such that
b C 2. Since Assg N consists of a single prime ideal, so Assg N = {z}. Hence in
view of [1, Proposition 3.6], p/z € E(b+ z/z, R/z). Since b C z, it follows from [3,
Remark 2.3] that p = z, which is a contradiction, because dim N = 1. Consequently,
b ¢ Zr(N) and the claim holds. O
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1. Introduction

Throughout this paper S will denote a monoid. A right S-act A is a non-empty set
on which S acts unitarily. To simplify, by an S-act we mean a right S-act. Recall
from [1] that a monomorphism f : B — A of S-acts is said to be essential if for
each homomorphism ¢ : A — C which ¢f is a monomorphism, then g is so. If f
is an inclusion map, then A is said to be an essential extension of B or B is called
essential (large) in A. We denote this situation by B C" A. It is shown that B C' A
if and only if for every non trivial congruence 6 on A, 6 N (B x B) # Apg. Also, a
subact B of a right S-act A is called intersection large if BN C # () for each subact
C' of A. The reader is referred to [2] for basic results and definitions relating to
semigroups, acts and other properties which are used here.

Khuri in [4] introduced the notion of retractable modules, and then some excel-
lent papers have been appeared investigating this subject. Also some weaker and
stronger classes of retractable modules are considered. For instance in [6], essentially
retractable modules are studied. In the category of S-acts, first in [3] retractable
S-acts are introduced. In [3], a right S-act A is called retractable if for any subact
B of A, hom(A, B) # . In [5] a slightly different definition of retractable acts over
semigroups with zeros are investigated and the authors introduced some smaller
classes of retractable acts, i.e., strong retractable, epi-retractable, mono-retractable
and largely mono-retractable acts.

In this paper we introduce essentially retractable acts. Also we give a classifica-
tion of monoids using essentially retractable acts. First we give general properties
of essential subacts.

LEMMA 1.1. For a monoid S the following hold:
1) [f Bl Q’ Al and Bg Q’ AQ, then Bl N Bg Q’ Al N Ag.
i) The intersection of finitely many essential subacts of an S-act Ag is essen-
tial.
iii) If f: As — Bg is an S-morphism and B' C' B, then f~'(B') C' As.
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iv) If BC' A and B is indecomposable, then A is indecomposable or A = A'UO
such that A" is indecomposable.

v) If A= [lic; Ais Al 22 and B C" A, then B = [],.; Br with B; " A; for
each i € I.

2. Main Results

As we mentioned before a right S-act A is called retractable if for any subact B of A,
hom(A, B) # (). Also, if for any subact B of A, there exists an epimorphism (resp.
a monomorphism) from A into B, then A is called epi-retractable (resp. mono-
retractable). Also a right S-act A is called largely (or essentially) mono-retractable
if A embeds in each of its intersection large subacts. As we know, in the category of
S-acts congruences and essential subacts play more important roles than subacts and
intersection large subacts, respectively. So we introduce a general class of essentially
retractable S-acts as follows.

DEFINITION 2.1. A right S-act Ag is called essentially retractable if for any
essential subact Bg of Ag, Hom(Ag, Bs) # 0.

Two following results are easily checked.

LEMMA 2.2. An S-act A is essentially retractable if and only if Im(f) is an
essentially retractable S-act for some f € End(A).

LEMMA 2.3. The following hold for a monoid S.
i) S and © are essentially retractable.
i) Ewvery essential subact of an essentially retractable right S-act is essentially
retractable.
iii) A retract of an essentially retractable S-act is essentially retractable.
iv) Let {Ai}icr be a family of essentially retractable S-acts and |A;| > 2. Then
[Lic; Ai is essentially retractable.
v) If Ag is essentially retractable, then H? Ag 1s essentially retractable for
any subact Bs of Ag.
vi) If S contains a left zero and A is a right S-act, then ST[ A is essentially
retractable.

Obviously, every retractable right S-act is essentially retractable. But the con-
verse is not valid. For example S and © are essentially retractable, and so by
Lemma 2.3, ST[O]] O is essentially retractable. But for a monoid S with no left
zero ST O]] O is not retractable. The following proposition deduces that to prove
an S-act is retractable, it suffices to show that all of its factor acts are essentially
retractable.

PROPOSITION 2.4. Let A be a right S-act. If any non-zero factor of A is essen-
tially retractable then A is retractable.

PROPOSITION 2.5. Let S be a monoid with a left zero. If A is essentially re-
tractable right S-act and B is an essential subact of A with Hom(A/B, B) = {0},
then, B 1is essentially retractable.
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Similar to rectactable S-act, essentially retractable S-acts are not preserved un-
der product, coproduct and factor. By [1, Lemma 2], if an S-act A has no fixed
element, then AJ] O is an essential extension of A. So if S contains no left zero,
then S C" ST O with hom(S][©,S) = (). Hence, we deduce the following result.

PROPOSITION 2.6. The following are equivalent for a monoid S.
i) FEwvery right S-act is essentially retractable.
i) S contains a left zero.
iii) Ewvery coproduct of a family of essentially retractable right S-acts is essen-
tially retractable.
iv) Ewvery factor of an essentially retractable right S-act is essentially retractable.
v) Let {Ai}ier be a family of essentially retractable S-acts. If [[,.; Ai is
essentially retractable, then each A; is also essentially retractable.

As in [2, V.3.4], two monoids S and T are called Morita equivalent if the two
categories Act-S and Act-T are equivalent. Also, a property (P) of a monoid S is
called a Morita invariant property, if each monoid T" which is Morita equivalent to
S has also property (P).

THEOREM 2.7. Assume that S is a monoid on which all right acts are essentially
retractable. If T is a monoid which is Morita equivalent to S, then, all right T-
acts are essentially retractable, that is, essential retractablity is a Morita invariant
property.

PROPOSITION 2.8. Assume that S C T are monoids such that T = [[/_, S is a

finitely generated free S-act, for some positive integer n. Let A be an indecompos-
able S-act and B an essential subact of A. Then, Homgs(A, B) # 0 if and only if
Homr(A®T,B®T) # 0.

PROOF. First note that by using [2, Proposition 11.5.13] we can show, for any
subact B of a right S-act A, B C" Aif and only if BT C" A®T. Moreover by [2,
Propositions 11.5.19 and 11.5.13],

Homp(A®T,BRT)= Homg(A, Homr(T,B®T)) = Homg(A,B®T).

Also, by [2, Proposition IL5.14], B® T = [[_,(B ® S). Moreover, since A is
indecomposable, by [2, Propositions 11.5.13 and 11.1.22 |,

Homg(A,
i=1 i=1 i=1
So Homg(A,B) # 0, if and only if Homg(A,[[\_,(B ® S)) # 0, if and only if
Homp(AQT,BRT) # 0. O

In the rest of this section we give some classifications of monoids and acts by
essentially retractable S-acts.

PROPOSITION 2.9. The following are equivalent for a monoid S.
i) FEwvery right S-act is retractable.
il) FEwvery right S-act is essentially retractable.
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iii) Fwvery injective right S-act is essentially retractable.
iv) FEwvery injective right S-act is retractable.

PRrROOF. The implications (i)==-(ii)==>(iii) are clear. We prove (iii)=(iv)=-(i).
To prove (iii)==(iv), let B be a subact of an injective right S-act A and E(B) be
the injective envelope of B. Since B C’ E(B), by (iii) there exists a homomorphism
from E(B) into B. Also there exists a homomorphism from A into E(B) by injectiv-
ity of E(B). Thus Hom(A, B) # 0, that is, A is retractable. To prove (iv)=>(i), let
A be a right S-act and B be a subact of A. First note that since E(B) is injective,
the embeding f : AN E(B) — E(B) can be extended to f : A — E(B). Also by
(iv), there exists g : E(B) — B. Therefore gf is a homomorphism from A to B,
that is, A is retractable. O

ProrPoOsITION 2.10. The following are equivalent for a monoid S.
i) FEvery essentially retractable right S-act is torsion free.
i) Fuvery essentially retractable right S-act with two generating elements is
torsion free.
iii) Any right cancellable element of S is right invertible.
iv) All right S-acts are torsion free.

PROPOSITION 2.11. The following are equivalent for a monoid S.
i) FEwvery essentially retractable right S-act is principally weakly flat.
i) S is a reqular monoid.

iii) Ewery right S-act is principally weakly flat.

THEOREM 2.12. The following are equivalent for a monoid S.
i) FEvery essentially retractable right S-act is weakly flat.
ii) Fwvery right S-act is weakly flat.

iii) S is a regular monoid which satisfies condition (R).

PROPOSITION 2.13. Let S be a monoid. Then, every essentially retractable right
S-act 1s flat if and only if every right S-act is flat.

PROPOSITION 2.14. The following are equivalent for a monoid S.
i) Fuvery essentially retractable right S-act satisfies condition (P).
ii) S is a group.

iii) FEwvery right S-act satisfies condition (P).

THEOREM 2.15. The following are equivalent for a monoid S.

i) FEwvery essentially retractable right S-act is equalizer flat.

i) FEvery essentially retractable right S-act satisfies condition (E).
iii) S={1} or S ={0,1}.

iv) Ewvery right S-act satisfies condition (E).

PROPOSITION 2.16. The following are equivalent for a monoid S.
i) FEwvery essentially retractable right S-act is free.

i) FEwvery essentially retractable right S-act is projective.

iii) Fwvery right S-act is strongly flat.
)

S = {1},

1v
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v) FEvery right S-act is free.
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1. Introduction

The class of BCK-algebras was introduced by Iseki and Tanaka in 1978 [2]. Hyper K-
algebras were introduced by R. A. Borzooei et al. in 2000 [1] which is a generalization
of BCK-algebas. Isomorphism theorems of hyper K-algebras were introduced by M.
M. Zahedi in [3]. The aim of this paper is to state second isomorphism theorem of
hyper K-algebras.

DEFINITION 1.1. [1] Let K be a nonempty set, ® : K x K — p*(K) be a
hyperoperation and ”e” be constant. The triple (K, ®, e) is called a hyper K-algebra,
if it satisfies the following axioms:

(HK1) (z ©2) 0 (y©2) <z 0y,

(HK2) (z0y) 0 z=(z02) Oy,

(HK3) z < z,

(HK4) z <y and y < z imply = = y,

(HK5) e < z for all z,y,z € K.

where the relation ”<” is defined by x < y if and only if e € x ® y. For any two
nonempty subsets X and Y of K, X <Y if and only if there exist z € X andy € Y
such that x <.

EXAMPLE 1.2. [1] Define a hyperoperation "®” on K = [0, +00) as follows:

[0,2] ifx<y,
roy:=4q 0,y if0#£y<u,
{«} ify=0,
for all z,y € K. Then (K, ®,0) is a hyper K-algebra.
DEFINITION 1.3. [1] Let I be a nonempty subset of a hyper K-algebra (K, ®, ).
Then [ is a hyper K-ideal of K if
(H1) e e I,
(HK) z @y < I and y € I imply that x € I, for all z,y € K.
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ExamMpLE 1.4. [1] Let K = {e,a,b}. Consider the following Table 1. Then
(K,®,e) is a hyper K-algebra and I = {e, b} is a hyper K-ideal of K.

DEFINITION 1.5. A hyper K-ideal I of a hyper K-algebra (K, ®, €) is called closed
if I is closed under the ® multiplication of K.

DEFINITION 1.6. [3] Let ~ be an equivalence relation on K and A,B C K.
Then

(a) A~ B if and only if there exist a« € A and b € B such that a ~ b.

(b) A~ B if and only if for all a € A there exists b € B such that a ~ b, and
for all b € B there exists a € A such that a ~ b.

(¢) ~ is called regular to the right if a ~ b implies that a ® ¢ = b ® ¢, for any
a,b,ce K.

(d) ~ is called good, if a ® b ~ {e} and b ® a ~ {e} imply that a ~ b, for all
a,be K.

TABLE 1. Table of Example 1.4.

© e a b

e | {e} {e}  {e}
a|{a} {e} {a}

b |{b} {e} {e,ab}

Analogously, the regularity of an equivalence to the left is defined. A regular equiv-
alence to the right and to the left is called regular.

From now on ~ is a good regular relation. For any z in K, equivalence class of
x under ~ is shown by C, and I = C..

PROPOSITION 1.7. If ~ is a good regular relation on K, then I = C, is a hyper
K-ideal of K.

Denote K /I = {C, | x € K} where I = C, and consider the well defined
hyperoperation * as follows:

x: K/IxK/I - K/I(C,,Cy) —{C, |t ezoy}

The relation < on K I is defined by C, < C, if and only if # <y. Then 2 <y &
ecrOy=CecC,xC, & C, <C,.

THEOREM 1.8. Let I = C.. Then (K /1I,x,1I) is a hyper K-algebra.

PrOOF. Let C,,Cy € K /I and C, xC, = {C} |t € 2 ®y} for all x,y € H. The
properties (HK1) to (HK5) of definition 1.1 follow by the routine manipulation. [

THEOREM 1.9. Let ~ be a good reqular relation on K. If I = C, and J be a
hyper K-ideal of K and I C J, then quotient hyper K-algebra J /1 = {Cy |t € J}
15 a hyper K-ideal of K /1.

PRroor. Let C, x C, < J /I and C, € J/I. Then for all C; € C, * Cj, there
exists Cy € J /I such that C; < Cyp. Thus for all t € a ® b, there exists t’ € J such
that t <. Hence a ©b < J and b € J. Since J is a hyper K-ideal of K, we have
a€JandsoC, e J/ 1. O
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Consider the hyper K-homomorphism f : (K3, ®,e;) — (K3, ®,e3). Then the
kernel of f is the set {z € K | f(x) = e2} and the image of f is the set Imf =

{f(z) |z € Ki}.
Kerf is always not a hyper K-ideal. For this, suppose that x © y < Kerf,y €
Kerf. Then there exist a € x ©®y and b € Kerf such that a <b. Thus

fla) < fO) = f2)@ fly) Se2 = f(z)@ea<ex = [flz) <e
= e € f(x) @ex = [f(2).
Hence f(x) = ey or f(x) = {eq,...}. If f(z) = €9, then x € Kerf and Kerf is a
hyper K-ideal of Kj.

2. Main Results

THEOREM 2.1. (First Isomorphism Theorem) Let f : K; — Ky be a hyper K-
homomorphism and Kerf be a hyper K-ideal of Ky. Then K1/ Kerf = Im(f).

LEMMA 2.2. For every hyper K-ideals I and J of a hyper K-algebra K, I' U J is
a hyper K-ideal of K if and only if I C J or J C I.

Under condition J C I, the hyper K-homomorphism between /(I NJ) and < I U
J > /Jin [3, Theorem 6.15] is a hyper K-isomorphism and the second isomorphism
theorem holds.

THEOREM 2.3. (Second Isomorphism Theorem) Let I and J be hyper K-ideals
of K such that I is closed and J C I. Then I/(INJ) =< 1UJ > /J, where
< IUJ > s the hyper K-ideal generated by I U J.

THEOREM 2.4. (Third Isomorphism Theorem) Let I and J be hyper K-ideals of
K such that J is closed and I C J. Then (K 1),/ (J /1) = K //J.
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1. Introduction

Throughout, let (R, m) denote a commutative Noetherian local ring with identity. In
this paper, for any R-module M we denote the injective envelope of M by Er(M).
Also, we denote the injective dimension of M by idg M. Finally, we denote the
projective dimension and the flat dimension of M by pd, M and fdg M, respectively.

One of the important and hard problems in local algebra is to determine the
homological dimensions of finitely generated modules over local rings. Concerning
this topic there are a lot of results in the literature. In this paper we shall prove
some results concerning the homomorphisms between injective modules. Then, as
our main result, we shall prove the following theorem:

THEOREM 1.1. Let (R, m, k) be a regular local Ting and M be a non-zero finitely
generated R-module. Let n > 1 be an integer such that TornR(M, k) ~ k. Then

For any unexplained notation and terminology we refer the reader to [1, 2] and

[3].

2. Main Results

We start this section with the following auxiliary lemmas which are needed in the
proof of Theorem 2.8.

LEMMA 2.1. [2, Exercise 18.6] Let (R, m, k) be a complete Noetherian local ring

and M be an R-module. If M 1is faithful R-module and is an essential extension of
k, then M ~ Eg(k).

LEMMA 2.2. Let (R,m, k) be a complete Noetherian local domain. If E is non-
zero injective R-module and f : E — Eg(k) is a non-zero R-homomorphism, then
f is an epimorphism.
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PROOF. Set M :=im f. By Lemma 2.1, it is enough to show that M is faithful.
Assuine the opposite which means there is an element 0 # x € m such that xM = 0.
Let f: E — M denote the map induced by f. Applying the functor — @z R/xR
to the exact sequence

Bl Mo

we get the exact sequence
E/aE — M — 0,

which implies that E/zFE # 0. On the other hand, by applying the exact functor
Hompg(—, F) to the exact sequence

0— R R— R/xR — 0,

we get the exact sequence
E-S FE—0,
which implies that £/xE = 0, a contradiction. 0

PROPOSITION 2.3. Let (R, m, k) be a complete local regular ring and E be a non-
zero injective R-module. If f : E — FEgr(k) is a non-zero R-homomorphism, then
f is an epimorphism.

PROOF. As any regular ring is domain, the assertion follows by Lemma 2.2. [

PROPOSITION 2.4. Let (R,m, k) be a complete Noetherian local domain and M
be a non-zero R-module. Suppose that

0— M- E % p e 2

is an injective resolution of M and t > 1 is an integer such that E, ~ Eg(k). Then
injdimp M <t.

ProoOF. As the R-homomorphism f;_; : E;_y — F; is non-zero and F; ~
Er(k), it follows that f;_; ia an epimorphism by Lemma 2.2. Hence, the exact
sequence

0—M-SE e e 9B o,

is an injective resolution of M. Therefore, by the definition, idg M < t. U

PROPOSITION 2.5. Let (R,m, k) be a complete reqular local ring and M be a
non-zero R-module. Suppose that

0— M- B2 1S E 2.

is a minimal injective resolution of M and t > 1 is an integer such that Ey ~ Egr(k).
Then idg M =t.

PrOOF. The assertion follows by Proposition 2.4. 0J
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PROPOSITION 2.6. Let (R,m, k) be a complete Noetherian local domain and M
be a non-zero R-module. Suppose that

= Qo T Q1 T Qo — M — 0,
1$ a flat resolution of M andt > 1 is an integer such that QQ; ~ R. Then fdg M < t.
PROOF. It is enough to prove that the map g;_; is a monomorphism. Let D(—)

denote the Matlis dual functor Hompg(—, Er(k)). By applying the exact functor
D(—) to the exact sequence

0—kergi1 — Q"3 Q1 — — Q225 Q1 25 Q" M —0,

we get an exact sequence

0— DM) 5By % B 2% B 2o — B "3 B, — D(kerg_1) — 0,

where, for each 0 < ¢ < t, the R-module E; := Hompg(Q;, Er(k)) is an injective
R-module and F; ~ Eg(k). Thus, by Lemma 2.2, the map f;_; is an epimorphism
so that D(ker g;_1) = 0. Therefore, ker g;,_1 = 0. O

LEMMA 2.7. Let (R, m, k) be a Noetherian local ring, M be a finitely generated
R-module and
i Ly M L M Ly T M — 0,
be a minimal free resolution of M. Then the following statements hold.
i) dimy, Tor®(M, k) = rank L; for each i > 0.
ii) pdgM =sup{i € Ny : Torj'(M, k) # 0}.

PROOF. See (2, §7, Lemma 1]. O

THEOREM 2.8. Let (R, m, k) be a regular local ring and M be a non-zero finitely

generated R-module. Suppose that n > 1 is an integer such that Tor®(M, k) ~ k.
Then pdg M =n.

Proor. Using the fact that Risa faithfully flat R-algebra and considering the
Lemma 2.7(ii), without loss of generality, we may assume that R is a complete
regular local ring. Let

e Ly M p M g T M — 0,

be a minimal free resolution of M. Then, by hypothesis and Lemma 2.7(i), it follows
that L, ~ R. Now, the assertion follows by Proposition 2.6 and Lemma 2.7(ii). O
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1. Introduction

Let S be an affine semigroup in N?, where N denotes the set of non-negative integers.
The affine semigroup ring K[S], over a field K, is defined as the subring ®,csKx?
of the polynomial ring K[x] = Klzy,...,x4. If d = 1, then S is a submonoid of
N. Let h be the greatest common divisor of non-zero elements in S. Dividing all
elements of S by h, we obtain an isomorphic semigroup in N. A submonoid S of
N such that ged(s;s € S) = 1 is called a numerical semigroup. In other words,
the study of affine semigroups in N reduces to the study of numerical semigroups.
The condition ged(s;s € S) = 1 is equivalent to say that N\ S is a finite set, [7,
Lemma 2.1]. Consider the natural partial ordering <g on N where, for all elements
z,y € N,z <5y if y —x € S. The maximal elements of N\ S with respect to <g
are called pseudo-Frobenius numbers. Froberg, Gottlieb and Haggkvist [4], defined
the type of the numerical semigroup S as the cardinality of the set of its pseudo-
Frobenius numbers. This notion of type coincides with the Cohen-Macaulay type of
the numerical semigroup ring K[S], see [8] for a detailed proof.

By analogy, Garcia-Garcia, Ojeda, Rosales and Vingneron-Tenorio, define a
pseudo-Frobenius element of S to be an element a € N¢\ S such that a+ 5\ {0} C S,
in [5]. They show that the set of pseudo-Frobenius elements of S, PF(S), is not
empty, precisely when depth K[S] = 1. Thus, when d > 1 and K[S] is a Cohen-
Macaulay ring, the set of pseudo-Frobenius elements of S is empty and express
noting about the Cohen-Macaulay type of the semigroup ring.

In this paper, we present another generalization of pseudo-Frobenius numbers,
called quast Frobenius elements. The number of quasi Frobenius elements determines
the Cohen-Macaulay type of the semigroup ring K[S], under the assumption that
the affine semigroup S C N¢ is simplicial, i.e. the rational polyhedral cone spanned
by S has d extremal rays. All affine semigroups in N¢, for d = 1, 2, are simplicial.
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2. Quasi Frobenius Elements

Throughout this section, K is a field and S C N¢ is an affine semigroup minimally
generated by mgs(S) = {ai,...,a.}. The semigroup ring K[S] = K[x*, ..., x?]
has a unique maximal monomial ideal m = (x*',...,x?). The affine semigroup S
is called simplicial if there exist d elements a;,, ..., a;, € mgs(S) such that they are
linearly independent over the field of rational numbers Q (equivalently, over the field

of real numbers R), and
d
S C Z Q>oa; .-
j=1

Let cone(S) denote the rational polyhedral cone spanned by S. Then cone(S) is the
intersection of finitely many closed linear half-spaces in R, each of whose bounding
hyperplanes contains the origin. These half-spaces are called support hyperplanes.
The integral vectors in each support hyperplanes, is a face of .S, and all maximal
faces (called facets) are in this form. The intersection of any two adjacent sup-
port hyperplane is a one-dimensional vector space, which is called an extremal ray.
The cone(S) has at least d facets and at least d extremal rays. It has d facets
(equivalently, it has d extremal rays), precisely when S is simplicial.

On each extremal ray of cone(S), the componentwise smallest element from S,
is called an extremal ray for S. Assume that S is simplicial and denote by ay, ..., a4
the extremal rays for S. Then for each a € S, we have na € Na;, 4+ --- + Na;_, for

some positive integer n.
Let £ ={a;,...,s4} and

Ap(S,E)={acS;a—a; ¢ 5, fori=1,...,d}.

DEFINITION 2.1. The element b — Zle a;, where b € Max<, Ap(S, E), is called
a quasi-Frobenius element. The set of quasi-Frobenius elements of S is denoted by

QF(S).

REMARK 2.2. Let d > 1. If f € QF(S) N PF(S), then f +a; = m — 3.7, a;,
where m € Max<, Ap(S, E). Since f € PF(S), this follows f + a; € S, which
contradicts m — 3¢, a; ¢ S.

The type of a d-dimensional Cohen-Macaulay local ring (R, m) is type(R) =
dimp/m Ext%(R/m, R). For a Cohen-Macaulay ring R, the type is defined as the
maximum of type(R,), where p ranges in the set of maximal ideals of R.

The ring K[S] is N-graded by setting deg(x®) = Ja|, for all a € S, where
(a1, ...,aq)| = Zle a;, denotes the total degree. Therefore,

type(K[S]) = type(K[S]m),
by [1, Theorem].

THEOREM 2.3. If K[S] is a Cohen-Macaulay ring, then
| QF(S)| = type(K[S])m = type(K[S]).
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PrOOF. The ring map K[S], — K[S5] is flat and has only one trivial fiber
which is the field K. Thus, K[S] is Cohen-Macaulay and

type(K[S])m = type(K[S]),

by [2, Proposition 1.2.16]. Let R = K[S]. Then R is a local ring with maximal ideal
m = (x?1,...,x%+r). Note that q = (x®',...,x) is a parameter ideal of R, since
S is simplicial. As R is Cohen-Macaulay, x?!, ..., x? provides a maximal R-regular
sequence. By [2, Lemma 1.2.19],

type(R) = dimp/m(Hompg(R/m, R/q).

Since Hompg(R/m, R/q) = (0 :p/q m) = {r € R/q ; rm = 0}, it is enough to show
that (0 :g/q m) is the R/m-vector space generated by residue classes of x°*, where
s € Max<, Ap(S, E). For an element, f € R, the residue of f in R/q is equal to the
residue of ) ., r;x%, for some r; € K and s; € Ap(S, E). If the residue of f in R/q,
belongs to (O_:R/CI m), then we derive x3%% € g, fori > landd+1<j<d+r
which implies s; € Max<, Ap(S, E). Conversely, let s € Max<, Ap(S, E). Since
s+a; ¢ Ap(S,E), fori=d+1,...,d+r, we get x°t € qR. O

Recall that a Cohen-Macaulay ring is Gorenstein precisely when its Cohen-
Macaulay type is one. As an immediate consequence of Proposition 2.3, we derive
the following:

COROLLARY 2.4. [6, 4.6, 4.8] K[S] is a Gorenstein ring if and only if it is
Cohen-Macaulay and Ap(S, E) has a single mazimal element with respect to <g.

The following example shows that | QF(S)| might be arbitrary large for a sim-
plicial affine semigroup S C N2, independently of its embedding dimension.

EXAMPLE 2.5. For an integer a > 3, let S be the affine semigroup generated
by a; = (a?,0), ay = (0,a?), a3 = (a® — a,a®* —a), ay = (a* —a+ 1,a*> —a + 1),
as = (a* —1,a* — 1). Then S is simplicial with extremal rays a;, ay. Let T be the
numerical semigroup generated by {a® — a,a* — a + 1,a*> — 1,a*}. Then

AD(S, E) = Ap(S,a1 +a0) = {(5,5) ;3 € Ap(T, a?)}.
Therefore, | QF(S)| = type(T) = 2a — 4, by [3, (3.4)Proposition].
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1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a multiplier on a
Banach algebra and was introduced by Akemann and Pedersen [5] for C*-algebras.
McKennon [9] extended the definition to a general complex Banach algebra A with
a bounded approximate identity (b.a.i., for brevity) as follows. A bilinear mapping
m:Ax A— Ais a quasi-multiplier on A if

m(ab, cd) = am(b, c)d, (a,b,c,d € A).

In [3] we extended the notion of quasi-multipliers to the dual of a Banach algebra
A whose second dual has a mixed identity. We considered algebras satisfying a
weaker condition than Arens regularity.

In [2] we defined extended left (right) quasi-multipliers on the dual of a Banach
algebra. We established some properties of QM (A*) of all bounded extended left
quasi-multipliers of A*. In particular, we characterized the y—dual of QM (A*) and
proved that (QM(A*),~)* under the topology of bounded convergence, is isomor-
phic to A***.

In [4] we extended the notion of quasi-multipliers to complete k-normed algebras
(0 < k < 1), and studied their bilinearity and joint continuity under some suitable
conditions. In this paper, we extend the notion of quasi-multipliers to the general
case of topological algebra A, not necessarily k-algebra or locally convex and also not
assumed to be metrizable. We introduce several notions of strict topologies (such
as left strict, right strict, strict, and quasi-strict topologies) on topological algebras
QM (A) of quasi-multipliers on A. Further, we investigate some properties of these
topologies, then we extend and unify several recent results of other authors to our
general setting.

2. Main Results

THEOREM 2.1. Suppose that (A, T) is a strongly factorable topological algebra.
Then:
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i) A mapm:AxA— Aisa quasi-multiplier on A if and only if
m(ab, cd) = am(b,c)d, Va,b,c,d € A.

i) Every quasi-multiplier m on A is bilinear.
iii) Every quasi-multiplier m on A is jointly continuous.

REMARK 2.2. Let QM (A) denotes the set of all bilinear and jointly continuous
quasi-multipliers on a topological algebra (A, 7).

DEFINITION 2.3. [7] An algebra A is said to be faithful (or without order) if
aA = Aa = {0} implies that @ = 0. We mention that A is faithful in each of the
following cases:

i) A is a topological algebra with an approximate identity (e.g., A is a locally
C*-algebra).
ii) A is a topological algebra with an orthogonal basis.

DEFINITION 2.4. [7] Let A be an algebra over the field K (R or C).

1) A mapping 7': A — A is called a
(i) multiplier on A if aT'(b) = T'(a)b for all a,b € A.
(ii) left multplier on A if T'(ab) = T'(a)b for all a,b € A.
(iii) right multiplier on A if T'(ab) = aT'(b) for all a,b € A.
2) A pair (S,T) of mappings S, T : A — A is called a double multiplier on A
if aS(b) =T(a)b for all a,b € A.

Let M(A) (respectively My(A), M,(A)) denote the set of all multipliers (respec-
tively left multipliers, right multipliers) on A and My(A) the set of all double mul-
tipliers on an algebra A.

EXAMPLE 2.5. Let A be a faithful algebra
(a) For any c € A, definem =m,: Ax A— Aby

me(a,b) = acd, for all(a,b) € A x A.
(b) For any T' € M,(A), define an associted map m =my : A x A — A by
my(a,b) = aT'(b), for all(a,b) € A x A.
(¢) For any T' € M,(A), define an associted map m = mp: A x A — A by
my(a,b) = T(a)b, for all(a,b) € A x A.
(d) For any T' € M(A), define an associted map m = mr : A x A — A by
my(a,b) = aT'(b), for all(a,b) € A x A.

(e) For any (S,T) € M4(A), define an associted map m = mgry: Ax A — A
by
ms(a,b) = aS(b), for all(a,b) € A x A.
Then each of the map m : A x A — A defined above is a quasi-multiplier
on A.
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DEFINITION 2.6. Let (A, 7) be a topological algebra. Following [9],[8], we can
define mappings
Ga A= QM(A), ¢ M(A) - QM(A),
¢r 2 Mp(A) = QM(A), da: Ma(A) = QM(A).

(Pa(a))(z,y) = zay, ac A,
(@(T))(w,y) = 2T(y), T € My(A),
(@r(T)(z,y) = T(x)y, T € M.(A).
DEFINITION 2.7. [9] A bounded approximate identity {e) : A € I} in a topolog-

ical algebra A is said to be ultra-approximate if, for all m € QM (A) and a € A, the
nets {m(a,ey) : A € I} and {m(ey,a): A € I} are Cauchy in A.

THEOREM 2.8. Let (A,7) be a complete topological algebra having an wultra-
approzimate identity {ex : X € I}. Then each of the maps ¢, ¢u, Gr, ¢q IS a
bijection.

DEFINITION 2.9. [9] Let A be a complete topological algebra with an ultra-
approximate identity {e) : A € I} and mqy,my € QM(A). Since ¢4 is onto, there
exist (S1,71), (S2,Ts) € My(A) such that

¢a(S1, 1) = my, @a(S2,Tz) = my.

By the definitions of ¢, and ¢,,
Ge(51) = my = ¢ (Th) and ¢y(S2) = ma = ¢r(13).

Therefore, the product of mq, ms can be defined in any of the following ways:
(i) miog, my = ¢4(S1,T1) 0g, Pa(S2, To) = ¢a[(S1,T1)(S2, T2)] = Pa(S1Sa, ToTh).

(ii) my og, M2 = G¢(S1) 09, Pe(S2) = Pe(5152).

(iii) my oy, My = ¢r(T1) 0g, Or(T2) = ¢, (ToT1).

Also my 04, Mg = My 0y, My = My Oy Ma.

Recall that QM (A) becomes an A-bimodule, as follows: For any m € QM (A)
and a € A, we can define the products a o m and m o a as mappings from A x A
into A given by

(@aom)(z,y) = m(za,y),
(moa)(z,y) = m(z,ay),
(aomob)(z,y) = m(xza,by), z,y,bec A.
Then aom, moa € QM(A), so that QM (A) is an A-bimodule.

In the sequel, (A, 7) denotes a Hausdorff topological algebra with a bounded

approximate identity {e, : « € I}.

Now, we introduce several notions of the quasi-strict operator topology 3, quasi-

uniform operator topology 7 on topological algebras QM (A) of quasi-multipliers on
A.
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DEFINITION 2.10. The quasi-strong operator topology 3 (5—topology, for brevity)
on QM (A) is defined as the linear topology which has a base of neighborhoods of 0
consisting of all the sets of the form

N(C,D,E;W)={m e QM(A) :Va € E (aom)(C,D) C W, (moa)(C,D) C W},

where C, D are finite subsets of A, F is a 7—bounded subset of A and W is a
neighborhood of 0 in A.

DEFINITION 2.11. The quasi-uniform operator topology 7 (y—topology, for brevity)
on QM (A) is defined as the linear topology which has a base of neighborhoods of 0
consisting of all the sets of the form

N(C,D,W) = {m € QM(A) : m(C,D)Cc W},
where C, D are finite subsets of A and W is a neighborhood of 0 in A.
LEMMA 2.12. Let (A, 7) be a factorable topological algebra. Then v C 3.

THEOREM 2.13. Let (A, 7) be a complete topological algebra with an ultra ap-
prozimate identity. Then the map ¢4 : (A, 7) = (QM(A), B) is a continuous homo-
morphism.

THEOREM 2.14. Let A is complete and metrizable. Then:

(a) (QM(A),~) is complete.
(b) If, in addition, A is factorable, (QM(A),B) is also complete.

DEFINITION 2.15. Let A be a topological algebra. An approximate identity
{eo} € A is called a central approximate identity if for each a € A, e a = ae,.

THEOREM 2.16. Let A has a central approzimate identity {es}. Then ¢p4(A) is
f—dense in QM (A).

THEOREM 2.17. Let (A, T) be a complete topological algebra with an ultra ap-
proximate identity. Then ¢4(A) is a f—closed two-sided ideal in QM (A).

COROLLARY 2.18. Let A be a complete topological algebra with a central ultra
approzimate identity. Then A and QM (A) are isomorphic.
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1. Introduction

One of the most important concepts in the study of Hilbert spaces is orthonormal
basis, which allow elements of a Hilbert space to be written as a linear combination
of the orthonormal basis. However, the condition of being linearly independent
for a basis is very restrictive.It makes it difficult or even impossible to define an
orthonormal basis with some extra property.

In 1952, Duffin and Schaeffer introduced frames in Hilbert spaces [9]. They used
frames as a tool in the study of non-harmonic Fourier series, i.e., sequence of the
type {e*rx},cz, where {\, }nez is a family of real or complex numbers. Frames
gained popularity outside non-harmonic Fourier series only in the last decade, due
to the work of the three wavelet pioneers, I. Daubechies, A. Grossmann, Y. Meyer
[7]. They observed that frames can be used to find series expansions of functions in
L?*(R) which are very similar to the expansions using orthonormal basis.

Frame elements are much more flexible than orthonormal basis in a Hilbert space.
Although, the linear expansion of elements with respect to an orthonormal basis is
unique, frames have the advantage that each element of a Hilbert space has infinitely
many representation with respect to a frame, which is called redundancy. This is
the main reason of application of frames in signal processing [15].

in 2000, M. Frank and D. R. Larson [11] generalized the classical frame theory in
Hilbert spaces to Hilbert C*-modules. Also, they proposed an interesting question,
for which kind of C*-algebra A, every Hilbert A-module admits a frame.

In this paper, we would discuss the attempts to respond the frame existence
problem in Hilbert C*-modules. Also, we would study the frame transform corre-
sponding to a frame in a Hilbert C*-module and propose a conjecture on the frame
existence problem.
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2. Frames in Hilbert C*-modules

Frame in a Hilbert space H is defined as a family {(f;) : i € I'} of vectors of H with
the property that there are constants C, D > 0 s.t.

Clll* < Sietl{z, £i)|* < Dll=||*.

In the case C' = D, the frame is called tight frame. Also, if C = D = 1, then the
frame is called normalized tight frame. The generalization of this concept to Hilbert
C*-modules is as follows:

DEFINITION 2.1. Let A be a C*-algebra. A pre Hilbert A-module is a left A-
module X, equipped with an A-valued inner product (-,-) : X x X — A such that
We assume that linear operations of A and X are compatible, i.e. A(az) = (Aa)z.
For any z € X we define ||z| = (||(z, 2)|)"/2.

It is well known that it is a norm on A. If X is complete with respect to this
norm, then X is called a Hilbert A-module (Hilbert C*-module over A).

Consider Hilbert A-modules X and Y. A map ® : X — Y is said to be ad-
jointable if there is an adjoint &* : Y — X that for every x € X and y € Y,

(@(z),y) = (z, P (y))-
The set of all adjointable maps from X to Y is denoted by End*(X,Y).

DEFINITION 2.2. Let X be a Hilbert C*-module. A family {f;}ics of elements of
X is called a frame for X, if ¥;c;(z, fi)(fi, x) is convergent in ultra-weak operator
topology to some element in universal enveloping von-Neumann algebra of A. Also,
there exist constants 0 < C' < D < oo such that for all x € X,

Clz,x) < Sier(z, fi)(fi,x) < D(z, ).

Canstants C', D are called the upper and lower frame bound. In the case C' = D,
the frame is called tight frame. Also, if C' = D = 1, the frame is called normalized
tight frame.

PROPOSITION 2.3. [16, Proposition 3.1] A family { fi}ic;r of elements of a Hilbert
A-module X is called a frame with frame bounds C' and D if and only if

for any x € X and every state p of A.

3. The Frame Existence Problem

In [11], M. Frank and D. R. Larson concluded from Kasparov’s stabilization theorem
that every finitely and every countably generated Hilbert C*-module over a unital
C*-algebra admits a frame. Later, in 2002, D. Baki¢ and B. Guljas showed that
for A being a compact C*-algebra, i.e. admitting a non-degenerate representation
into K(H), for some Hilbert space H, then every Hilbert A-module X admits an
orthonormal basis [6]. L. j. Arambasi¢ proved in 2008 that every full (countably
generated) Hilbert A-module X posses an orthonormal basis if and only if A is
x-isomorphic to a C*-algebra of compact operators, [2, Corollary 6 and Corollary 7].
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In 2010, Hanfeng Li solved this problem in the commutative and unital (not
necessarily countably generated) case. He applied the categorical equivalence of
Hilbert C*-modules over commutative C*-algebras and continuous fields of Hilbert
spaces over a compact space to determine the construction of some Hilbert C*-
module over a commutative and unital C*-algebra that admits no frames. Indeed,
he showed that every Hilbert C*-module over a commutative and unital C*-algebra
A has a frame if and only if A is finite dimensional. Later, M. B. Asadi, M. Amini,
G. Elliott and F. Khosravi studied the frame existence problem [1]. They applied
the same technique as Li to show that every Hilbert C*-module over a commutative
C*-algebra A has a frame if and only if A is a C*-algebra of compact operators.
Moreover, every infinite-dimensional nuclear von Neumann algebra A posesses a
Hilbert A-module with no standard frame [1, Corollary 2.6]. Furthermore, if two
C*-algebras A and B are Morita equivalent and A is o-unital, then the property of
A that every Hilbert A-module admits a standard frame inherits to B [1, Thmeorem
2.4]. The following is a conjecture on the frame existence problem.

Conjecture 3.1. [1, Question 1.5] Every Hilbert C*-module over a C*-algebra A
admits a frame if and only if A is a C*-algebra of compact operators.

3.1. Commutative Case. By Gelfand- Neimark theorem, [8, Theorem 1.4.1],
for every commutative C*-algebra A, there exists a locally compact Hausdorff top-
logical space X such that A is isometrically *-isomorphic to Cy(X), Moreover X is
compact if and only if A is unital. In this section, we consider categorical approach
to Hilbert C*-modules over commutative C*-algebras to determine the construction
of some Hilbert C*-module that admits no frames.

DEFINITION 3.2. Let T be a locally compact Hausdroff space. A continuous field
of Hilbert spaces over T is a family H = (H,);er and a space X (H) of sections that,
1) For every x € X(H) and t € T, The set x(t) is dense in H;.
2) The function ¢t — ||x(¢)] is continuous on T for any = € X (H).
3) For any section z, if for any ¢ € T and every € > 0 there is a 2’ € T" such
that [|z(s) — 2/(s)|| < € for any s in some neighborhood of t, then z € T'.
A continuous field of Hilbert spaces over a locally compact Hausdorff space T is
denoted by the pair (H, X(H)). The topological space T is called the base space
[14].
Let (H,X(H)) be a continuous field of Hilbert spaces over a locally compact
space T'. By [8, Proposition 10.1.9], X (H) is a right Cy(7")-module under the point-
wise multiplication,

(xa)(t) = z(t)a(t), reX(H),aeCy(T),teT.

because of the polarization identity one can equip X (H) with a Cy(7T')-valued inner
product, (z,y)(t) = (z(t),y(t)) for every z,y € X(H), and t € T. By Axioms 3 and
4 of 3.2, X(H) is complete with respect to

2]l = I, &) = sup |z (£)]].
teT

Hence, X (H) is a Hilbert Cy(7)-module.
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THEOREM 3.3. [1, Proposition 1.3|, Let (H,X(H)) be a continuous field of
Hilbert spaces over an infinite locally compact Hausdorff space T'. There is a count-
able subset W C T and a point to. € W /W that H, is separable for everyt € W and
H,_ is non-separable. Moreover, X(H) as a Hilbert Co(T)-module has no frames.

3.2. Non-Commutative Case. In this section, we determine the approach
of [4, 5], which is considering the Elliott-Kawamura categorical approach [10] to
Hilbert C*-modules to determine the construction of a Hilbert C*-module admitting
no frames.

THEOREM 3.4. Suppose that A is a C*-algebra, fo € P(A), mo = [fo], Hnry is a
separable Hilbert space and W is a countable subset of P(A) such that fo € W\ W.
If there exists a uniformly continuous holomorphic Hilbert bundle of dual Hopf type
H = (B(Hr, Kr)ex)(renepya) such that for any m € (W], K. is separable and Kr,
is nonseparable, then the Hilbert A-module X (H) possess no frames.

3.2.1. K(¢?)+ Clp. In the following, we consider A = K(H)+ Cly, where H is
a separable infinite dimensional Hilbert space. Also, let {h, },en be an orthonormal

basis for H and e,, = h,, ® h,,, for all n € N.
According to Corollary [5], one can consider P(A;) = |J,c ({7} xR1(H;) J({mo}, 1).

Moreover, A = {[m],[m]}, where, for every T € A, m({T + A1}) = X and
m({T + A1}) =T + M. Thus, we can consider

P(Ay) = ({m} x Ri(H)) U {(mo, 1)}

Note that in this case, P(A;) is a compact Hausdorff space and also (m, 1) € W\ W,
where W = {(m,e,) : n € N}.

LEMMA 3.5. [16, Lemma 2.1] There exists an uncountable set F of injective
maps N — N such that for any distinct f,g € S, f(n) # g(n) for all but finitely
many n € N and f(n) # g(m) for all n # m.

THEOREM 3.6. [4, Theorem 4.1] There exists a uniformly continuous holomor-
phic Hilbert bundle of dual Hopf type over P(Ay) satisfying the conditions of Theorem
3.1.

The following result can be obtained from Theorems 3.4 and 3.6.

COROLLARY 3.7. [4, Corollary 4.2] The C*-algebra K (¢?)+Clp has a frame-less
Hilbert module.

3.2.2. C*-algebra of compact operators. In the following, we generalize the per-
vious results in [4] to the case of a compact C*-algebra that has a faithful *-
representation in the C*-algebra of all compact operators on a not necessarily sep-
arable Hilbert space.

Let A be a non-unital C*-algebra of compact operators, which by [3], is -
isomorphic to ¢y — ®;er K (H;), where I is an index set and for every i € I, dim(H;)
is at most countably infinite. The C*-algebra A is considered to be nonunital so it
is infinite dimensional and the index set I in the above c¢p-sum is infinite or there
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exists some i € [ such that H; is an infinite dimensional Hilbert space. According
to [5]

P(A) = J{m} x Ru(H) [ J({mo}, 1)
€A
Moreover, A = {me,m : i € I} ,where m({T; + A1}) = X and
mi({T; + A\1}) = T; + My, € K(H;) + Cly,, for every {T;} € Aand i € I.

LEMMA 3.8. Let A, B be a C*-algebras and suppose that there is a projection
p € Z(M(B)) that A = pB. If every Hilbert B-module admits a frame, then every
Hilbert A-module admits a frame.

PROOF. Suppose, there is a central projection p C Z(M(B)) that A = pB. Let
X be a Hilbert A-module that admits a frames. Since, p is central, X can also be a
Hilbert A-module, the property of admitting a frame does not change. O

THEOREM 3.9. Let A be a non-unital C*-algebra of compact operators. If A is *-
isomorphic to co — ®;er K (H;), where I is an arbitrary index set and for every i € I,
dim(H;) is at most countably infinite. There is a uniformly continuous holomorphic
Hilbert bundle of dual Hopf type (H, X (H)) over P(A;), that X (H) as a right Hilbert
Aq-module admits no frames, where where Ay is the unitization of A.

4. The Frame Transform

It is shown in [11] that for a unital C*-algebra A, the frame transform operator re-
lated to a frame in a finitely or countably generated Hilbert A-module is adjointable
in any condition. Also, they showed that the reconstruction formula holds. More-
over the image of the frame transform operator is an orthogonal summand of I?(A),
where
P(A) = {(as)ien : Bigsa; converges in |||},

equipped with the A-valued inner product ((a;), (b;)) = X;a;b; is a Hilbert A-module.
Note that since the structure of an arbitrary C*-algebra A might be much more
complicated than the complex number set C, the proof of these properties for the
frame transform is quite different from the Hilbert space case. For the Hilbert space
case see [12, Proposition 1.1] and [13, Theorem 2.1 and 2.2].

Let A be a C*-algebra that every Hilbert A-module admits a frame {(f;) : i € I},
where [ is an arbitrary index set. Consider

Hy = {(a;)ier : Xia;a; converges in |[|.||4}.

Similarly H4 is a Hilbert A-module equipped with the A-valued inner product
((a;), (b;)) = Xiera;b} is a Hilbert A-module. The following result is a generalization
of [11, Theorem 4.1].

PROPOSITION 4.1. Let A be a unital C*-algebra. Suppose that X is a Hilbert A-
module with a standard normalized tight frame {f; : i € I}. Then the corresponding
transform operator 6 : X — Ha defined by 0(x) = {({x, f;)) : i € I}, for x €
X possesses an adjoint operator and realizes an isometric embedding of X onto
an orthogonal summand of Ha. The adjoint operator 0* is surjective and fulfills
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0*(e;) = fi, for every i € I. Moreover, the corresponding orthogonal projection
P : Hy — 0(X) fullfils P(e;) = 6(fi), for the standard orthogonal basis {e; =
(04,04, ...,14,3:),04,...) i € I} of Hy. For every v € X, the decomposition x =
Yz, fi) fi is valid, where the sum converges in norm.

As a consequence of the following result, for every closed submodule X of Hy,
there is a closed submodule N of H 4, such that M @& N is isomorphic to H 4.

Conjecture 4.2. Let A be a unital C*-algebra such that every Hilbert A-module X
admits normalized tight frame. The following are equivalent:

i) For every closed submodule X of Hp,, there is a closed submodule N of H
, such that M & N s isomorphic to H4.

ii) for every closed submodule X of Ha, there is a closed submodule N of Ha,
such that M & N = Hy.

On the other hand, by [17, Theorem 1], for C*-algebra A, if there is a full Hilbert
A-module X such that for every closed submodule M of X, X = M & N for some
closed submodule N of X, then A is %-isomorphic to a C*-algebra of (not necessarily
all) compact operators. Consequently, if the following conjecture holds then every
Hilbert A-module admits a frame if and only if A is *-isomorphic to a C*-algebra
of compact operators. Moreover, here we have supposed that the C*-algebra A is
unital. Note that a unital C*-algebra of cpmpact operators is finite dimensional.
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1. Introduction

This section will be divided into two general sections which each of them introduces
a concept separate from the other. We first bring up a brief introduction on spectral
theory, then we will explain about the hypercyclicity.

Let X be a Banach algebra with a unit element e and x € X, then the spectrum
of = is denoted by o(z) and;

o(z) = {\ € C; x — Xe is not invertible in X }.

It is well known that, the spectrum of x is non-empty compact subset of C, [4], so
the set {|\|; A € o(x)} has a maximum member which is called the spectral radius
of x. And the set C\ o(x) is called the resolvent set of x. It is worthwhile to mention
that, if 7" is an operator on finite-dimensional Banach space, then o(7T) consists of
eigenvalues of 7" which is denoted by o,(T) (is called the point spectrum of 7') and
since the eigenvalues of an operator on finite-dimensional Banach space are precisely
the roots of its characteristic polynomial, the non-emptiness of o(T") is equivalent to
the fundamental theorem of algebra that every polynomial has a root in C. However
throughout this paper, we focus on infinite-dimensional separable complex Banach
space X and L(X) denotes the algebra of all bounded linear operators on X.

DEFINITION 1.1. For an operator T' € L(X) and a vector z € X, the local
resolvent set of the operator T at x is the union of all open subsets U of C for which
there is an analytic function ¢ : U — X satisfying (T" — 2I)¢(z) = « for every
z € U. Its complement is called the local spectrum of 7" at = and denoted by or(z).

It is well known that, the local spectrum, o7(x), is a compact subset of o(T),
[8]. Although the spectrum of every operator T is always nonempty, but with an
example in the next section, we show that or(z) can be an empty subset of C. New
and interesting results can be seen in [1] and [5].

For T € L(X), x € X, and Q a non-empty subset of the complex plane C, we
denote

Orv(T, Qx) ={wT"z; weQ, n=0,1,2..}.

*Speaker
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If the set Q@ C C reduces to a single nonzero point {wy} such that the orbit
orb(T,Qx) = X, then wyz is said to be a hypercyclic vector for hypercyclic operator
T. In this case, HC(T) denotes the set of all hypercyclic vectors for the operator
T. Of course, hypercyclic operators cannot exist in non separable Banach space.
On the other hand, every separable infinite-dimensional Banach space supports a
hypercyclic operator, [6]. Now consider 7" be an operator on X with continuous
inverse 77!, then it is well known that the operator T is hypercyclic if, and only if,
its inverse is.

There is a well known link between spectral theory and hypercyclicity. In fact,
for any hypercyclic operators T
i) The point spectrum of its adjoint is empty: o,(T™*) = ¢.
ii) The spectrum of 7" meets the unit circle: o(7) N T # ¢.
In above, if Q = C and orb(T,Qz) = X, then T is called supercyclic operator. In
[7] The class of supercyclic operators is divided into the following two classes;
i) Supercyclic operators T' for which the point spectrum of its adjoint is empty,
o,(T*) = ¢.
ii) For any nonzero complex number ¢ there exists a supercyclic operator T
with o,(T%) = {¢}.
Some other connections between them can be seen in [3].
In this paper, we want to express a relationship between the local spectrum and
the orbit of an invertible operator and based on that, we will present two interesting
suggestions for researchers.

2. Main Results

As we mentioned in the previous section, the next example shows that sometimes
the local spectrum is empty.

EXAMPLE 2.1. Let H be a Hilbert space with an orthonormal basis {e;|i > 0}.
Consider S € L(H) as the unilateral forward shift (Se; = e;41) and let S* be its
adjoint,

S*e() = O, S*ei = €i_1, 1 € N.
Obviously, 5*S = I and if z = > 7 2 %¢;, then
x

S*x = S*(io: 2_i€7;) = ZQ‘iei_l = N 2_i_161‘ = 5
1=0 i=1 1=0

Let |z| < 1, then g(z) = Y o0, S"™(2)z" is convergent and

(S*—2)g(z) = Z SH(x)z" — Z St (2) = .
i=0 =0
And when |z] > 1, consider f(z) = =Y., % Thus

=X.

o0 S*i+1 e S*z
(8= () ==Y T+ Y

Zi
i=0 =0
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Therefore in the definition of local resolvent set of x under S*, U = C or equivalently

O g+ (IL“) = @

In the next theorem a relationship is expressed between the local spectrum and
the orbit of a vector under an invertible operator.

THEOREM 2.2. Let T € L(X) be an invertible operator and x € X be a hyper-
cyclic vector for T=Y. The local spectrum or(x) does not contain the number zero,
if and only if, the orbit of x under T~ has following property;

sup ||T_”x||% < 0.
neN

PROOF. Let there exists a neighborhood U C C of zero, for which there exists
an analytic function f : U — X satisfying (T — 21I)f(z) = x for every z € U, so
we can consider f(z) =Y x,412" as the Taylor expansion of f in U, then

(T —2)f(2) =Tz, + Z 2(TTps1 — Tp) = x,
n=1
and )
sup ||z, |7 < o0.
n>1

Consequently Tx; = x and Tz, 1 = x, for every n € N.
Therefore 0 & or(x) if and only if the orbit orb(T~!, ) has the desired property
and the proof is completed. O

As we mentioned above, 0,(T*) = ¢ for every hypercyclic operator, so we want
to know that, what is the relationship between local spectrum and point spectrum?
The following theorem partially responds to this curiosity.

THEOREM 2.3. Assume that T is an operator on X and 0 € or(x) for any
r € X, then 0,(T) = ¢.

PROOF. Suppose that o € X and A is a nonzero complex number such that
Txg = Axg. For every n € N if \z,, = x,,_1, then Tx,, = x,,_1 and

1 1 1
sup ||z, ||» = sup||—/\nx0||n < 0.
n>1 n>1

Note that f(z) = > 7 @p412" is convergent in the radius of convergence of this
power series and

(T —2)f(z2) =Tx + Zz"(Tan — Ip,) = .
n=0
Thus 0 ¢ or(zo) when 0 # X € 0,(T"). Since the case A = 0 is trivial, so the proof
is completed. O

Theorem 2.2 shows that there exist a relationship between the local spectrum
and the orbit of an invertible operator. In addition, for a hypercyclic operator T,
the point spectrum of its adjoint, 0,(7T™), is empty. Hence it is natural to raise the
following question;
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QUESTION 2.4. Does every hypercyclic operator have a hypercyclic vector x such
that 0 € op(z)?

The next theorem can be seen in [2].

THEOREM 2.5. Let @ : L(X) — L(X) be an additive map such that ooy (x) =
or(x). Then ®(T) =T for all T € L(X).

Now, trying to find a convincing answer to the following question can be inter-
esting.

QUESTION 2.6. Consider ¢ be an additive map preserving hypercyclicity on
L(X), ie.
HO(T) # ¢ = HO(@®(T)) £ 6.

Can we characterize this additive map?
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1. Introduction

The important role played by Jensen’s inequality in mathematics, statistics, eco-
nomics, probability theory etc is well known, see [6, 8] and references therein. The
key to this inequality is convexity; A function f : I C R — R, is said to be convex
if for every z,y € I and t € [0, 1],

fltz + (L =t)y) <tf(x)+(1—1t)f(y)

The classical integral form of Jensen’s inequality states that

f(ﬁ/jg() ) _a/f

where ¢ is a integrable function on [¢, d] with a < g(z) < b and f is a convex function
on [a, b]. In recent years, many papers dealing with refinements of Jensen’s inequality
have been appeared in the literature, see [3, 5, 7, 9] and references therein. On
the hand, several extensions and generalizations have been considered for classical
convexity. A significant generalization of convex functions is that of invex functions
introduced by Hanson in [2]. Weir and Mond in [10] introduced the concept of
preinvex functions and applied it to the establishment of the sufficient optimality
conditions and duality in nonlinear programming. There have been some works
in the literature which are devoted to investigating preinvex functions (e.g. see
[1, 4, 10] and references therein). There are many results on the integral arithmetic
mean. A basic one is the integral form of Jensen’s inequality:

THEOREM 1.1. Let (X,X, 1) be a finite measure spaces and g : X — R be a
p—integrable function. If f is a convexr function given on an interval I C R that
includes the image of g, then Mi(g) € I and

f(Mi(g)) < Ml(fog)
provided that fog is p—integrable, My(f) := fX fdpu.
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Now, we recall some notions in invexity analysis which will be used throughout
the paper. A set S C R is said to be invex with respect to the map n: S x S — S,
if for every xz,y € S and t € [0, 1],

y+in(x,y) €8S.

It is obvious that every convex set is invex with respect to the map n(x,y) = =z —y,
but there exist invex sets which are not convex. Recall that for x,y € S the n—path
P,, is a subset of S defined by

Puy = {2 +tn(z,y)| 0 <t < 1}

Let S C R be an invex set with respect to n : S x S — S. Then, the function
f S — Rissaid to be preinvex with respect to 7, if for every x,y € S and ¢ € [0, 1],

fly+tn(z,y) <tf(x) + (1 —1)f(y).

Every convex function is preinvex with respect to the map n(z,y) = x — y but
the converse does not holds. Recall that the mapping n : S x S — S is said to be
satisfies the condition C' if for every z,y € S and t € [0, 1],

n(y,y +tn(z,y)) = —tn(z,y),
n(z,y+tn(z,y)) = (1 —t)n(z,y).

For every z,y € S and every ty,t5 € [0,1] from condition C' we have

U(y + tg’f](]?, y)? Y+ tln(x7 y)) = (tQ - tl)n(x7 y)
We also recall the following theorem from [6, p. 25].

THEOREM 1.2. Let f : I — R be a convex function on interval I C R. Then, f
is continuous on the int(I) and has finite one sided derivatives f' (x) and f (x) at
every point x € int(I). Moreover, for everyy € I,

fly) = f(@) + (y — ) 1 (o).

The main purpose of this paper is to generalize Jensen’s type inequality for
preinvex functions defined on invex subsets of real line.

2. Main Results

In this section we will establish a version of Jensen’s type inequality for preinvex
functions. Follows we introduce some results that we need to reach our goal. At first
we introduce the following proposition which will be useful to illustrate the preinvex
functions.

PRrROPOSITION 2.1. Let S C R be an invexr set with respect ton : S xS — S.
Suppose that [ is a real valued function on S. Then,

i) If f: S — R is preinver and n satisfies condition C' then, the restriction of
f to any n—path in S is a convex function.

ii) If for every z,y € S, f(x +n(y,z)) < f(y) and the restriction of f to any
n—path in S is a convexr function then, f is a preinvex function on S.

A generalization of Theorem 1.2 is given in the following theorem.
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THEOREM 2.2. Let S C R be an invex set with respect ton: S xS — S and n
satisfies condition C. Assume that n(x,y) # 0, for every x # y € S. Suppose that
f 8 —= R is a preinvex function. Then,

i) f has finite left and right derivatives at each point of int(S).
it) for every x,y € int(S) we have

fly) = f(@) +nly, ) f} (2).
We start with the following special case.

THEOREM 2.3. Let S C R be an invex set with respect ton : S x S — S and
n satisfies condition C. Suppose that f : S — R is a preinver function. Assume
that the integrable function g : S — S maps every n—path to itself. Then, for every
a,b e S, with a < a+n(b,a), the following inequality holds

1 a+n(b,a) 1 a+n(b,a)
! (mb,a)/a 9("”“)%(6,@)/@ Joatoyte:

provided that fog is integrable.

Motivated by [6, Theorem 1.8.1, p. 47] and [8, Theorem 2.23, p. 64] we introduce
the following theorem which is a generalization of Jensen’s Theorem 1.1 in preinvex
functions setting.

THEOREM 2.4. Let (X,%,pu) be a finite measure space and g : X — R be a
p—integrable function. Suppose that S C R s an invex set with respect to n :
Sx S — S and S includes the image of g. If f : S — R is a preinvex function then,

i) Mi(g) € S.

i) If ¥(x) :=n(g(x), Mi(g)) and ¥(x) # 0 for every x € X, such that g(x) #
M;(g) then, there exists K € R such that the following inequality holds

f(ﬁ/){gdo Sﬁ/x(fog)du—f(ﬁ/xw%

provided that v and fog are pu—integrable.
The following corollary is an immediate consequence of Theorem 2.4.

COROLLARY 2.5. Suppose the conditions of the Theorem 2.4 are satisfied. Ad-
ditionally, if
: /
n(g(x), Mi(g))dp = 0,

then,

f (ﬁ/}(gdu) < ﬁ/x(fog)du-

In the following corollary we obtain the left-hand side of Hermite-Hadamard
inequality as a consequence of Theorem 2.4.
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COROLLARY 2.6. Under conditions of the Theorem 2.4, for every for every a,b €
S, with n(b,a) # 0, we have

1 1 a+n(b,a)
+ —n(b, < — dz.
flatgn0) < s [ fa)as

Note that in trivial case if n(y, x) := y — x, then S and f will be convex set and
convex function respectively and Corollary 2.5 gives us the usual Jensen’s inequality
presented in Theorem 1.1. Now, we give an example of a preinvex function defied
on an invex set.

EXAMPLE 2.7. Let S :=[—3,—2] U[2,3]. It is easy to see that S is an invex set
with respect to n: S x S — S defined by

r—y xvye [_37_2]7

n(z,y):=q z—y z,y€cl23],
0 otherwise.

Simple computation show that the restriction of the function f : .S — R defined by

e” x € [-3,-2],

I@ =32y veps)

to every n—path in S is a convex function. Moreover, for every z,y € 5,

fly+n(z,y) < f(z),
hence, by Proposition 2.1 (ii) f is a preinvex function on S.
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the local spectral subspace of Jordan product of operators associated with a singleton. Also, we
obtain some interesting results in direction.
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1. Introduction

The problem of characterizing linear or additive maps on B(X) preserving local
spectra was initiated by Bourhim and Ransford in [4] and continued by a number
of authors; see for instance [3] and the references therein.

Throughout this paper, Let B(X) be the algebra of all bounded linear operators
on a complex Banach space X and its unit will be denoted by I. The local resolvent
set, pr(x), of an operator T' € B(X) at some point x € X is the set of all A € C
for which there exists an open neighborhood U of X in C and an X-valued analytic
function
f:U — X such that (ul —T)f(u) = x for all p € U. The complement of local
resolvent set is called the local spectrum of T" at z, denoted by or(z). The local
spectral radius of T at z is given by r7(z) := limsup,__,._ ||T"||=, and coincides with
the maximum modulus of or(x) provided that 7" has the single-valued extension
property. Recall that an operator T' € B(X) is said to have the single-valued
extension property (henceforth abbreviated to SVEP) if, for every open subset U of
C, there exists no nonzero analytic solution, f : U — X, of the equation

(Wl =T)f(p) ==, Vpel.

Every operator T' € B(X) for which the interior of its point spectrum, o,(7), is
empty enjoys this property. The notion of SVEP at a point dates back to Finch [5].
For every subset ' C C the local spectral subspace Xr(F') is defined by

Xr(F)={re€ X :op(x) C F}.

Clearly, if Fy C Fy then Xp(F;) C Xp(F,). For more information about these
notions one can see the books [1, 6].

*Speaker
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In this section, we collect some lemmas that are needed for the proof of our main
result in the next section. For a vector z € X and a linear functional f in the dual
space X* of X, let x ® f stands for the operator of rank at most one defined by

(z@ fly=fy)z, VyeX.

We denote F;(X) the set of all rank-one operators on X and N;(X) be the set of
nilpotent operators in F;(X). Note that z ® f € N;(X) if and only if f(x) = 0.

LEMMA 1.1. [1, 6] Let X be a Banach space and T € B(X). For every z,y € X
and a scalar o € C the following statements hold.
1) If T has SVEP, then orp(x) # 0 provided that x # 0.
2) or(ax) =op(x) if a« # 0, and our(x) = aop(x).
3) If Tx = Az for some A € C, then op(x) C {A}. If, further, x # 0 and T
has SVEP, then or(x) = {\}.
4) If S € B(X) commutes with T, then op(Sz) C or(x).
5) orn(z) = {or(x)}" for allz € X and n € N.

We require the following elementary properties of local spectral subspace.

LEMMA 1.2. [1] Let T € B(X) and F C C, then Xp(F) is a T-hyperinvariant
subspace of X, and

(T = MN)Xr(F) = Xr(F), VAeC\F

The third lemma gives an explicit identification of local spectral subspace in the
case of rank-one operator.

LEMMA 1.3. [4] Let R € F\(X) be a non-nilpotent operator, and let X\ be a
nonzero eigenvalue of R. Then Xg(0) = ker(R) and Xr({\}) = Im(R).

The next lemma is a useful elementary result about perturbations by rank one
operator.

LEMMA 1.4. [7] Let T € B(X), let x € X, let f € X*, and A\ € C\o(T).
Then A € o(T+x® f) if and only if f(A—T) 'x) = 1. In particular, if C\o(T) is
connected, then sigma(T +x® f)\o(T) contains only isolated points and is therefore
at most countable.

In this paper, we describe maps preserving the local spectral subspace of Jordan
product T'o S =TS 4 ST of operators associated with a singleton. Also, we obtain
some interesting results in direction.

2. Main Results

The following Lemma is a key of the proofs coming after.

LEMMA 2.1. [2] Let x be a nonzero vector in X and T, S € B(X). If Xr({\}) =
Xs({A}) for all X € C. Then, or(z) = {u} if and only if os(x) = {u} for all p € C.
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In [2], H. Benbouziane et al. showed that a surjective map preserving the local

spectral subspace of sum of operators associated with a singleton is the identity on
B(X).

THEOREM 2.2. [2, Theorem 3.1] A surjective map ¢ : B(X) — B(X) satisfies
Xomros)({A}) = Xris({A}) VT,5 € B(X), VAeC,
if and only if o(T) =T for all T € B(X).

Let T, S € B(X). We introduce the following equivalence relation defined by
T ~ S if and only if T'— S is a scalar operator.

LEMMA 2.3. Let T,S € B(X) [f XTN+NT<{/\}) = XSN+NS({/\}) fOT all e C
and N € N1(X), thenT ~ S.

This theorem will be useful in the proofs of the main results.

THEOREM 2.4. Let T, S € B(X). The following statements are equivalent.
1) T=S-S.
2) Xrrirr({A}) = Xsrirs({A}) for all A € C and R € Fi(X).

THEOREM 2.5. Let ¢ : B(X) — B(X) be a surjective map such that

Xgo(T)go(S)-i—go(S)go(T)({)‘}) = XTS+ST({/\}) A T, S e B(X), V)& C,
if and only if either o(T) =T for all T € B(X) or o(T) = =T for all T € B(X).
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1. Introduction and Preliminaries

Let (£,.,e,()7!) be a group (written multiplicatively, with identity element e) and
¥ a self mapping on L. If there exists an element w € £ such that ¥(w) = w, then
element w is said to be a fixed point of ¥ and define the n'* iterate of ¥ as ¥° = I
(the identity map) and 9" = 9" 1ov, for n > 1.

Fixed point theory for non-expansive and related mappings plays a significant
role in the development of the functional analysis and its applications. One well
known type of this theorems is Banach fixed point theorems [1]. On the other hand,
group-norms have also played a role in the theory of topological groups [2, 4]. The
Birkhoff-Kakutanis metrization theorem for groups states that each first-countable
Hausdorf group has a right invariant metric [3]. The term group-norm probably first
appeared in Pettiss paper in 1950 [5]. Some results on the existence and uniqueness
of fixed points on normed groups and Banach group are proved in this paper. We
begin with some basic notions which will be needed in this paper.

DEFINITION 1.1. [2] Let £ be a group. A norm on a group L is a function
|.]l : £ — R with the following properties:

(1) [Jw]|| >0, for all we L,

(2) fJwll = [, for all w e L,

(3) lwkl| < [lw[l + k]|, for all w,k € L,

(4) [|w|| = 0 implies that w = e.
A normed group (L, |.||) is a group £ equipped with a norm ||.||. By setting
d(w, k) := ||lw k||, it is easy to see that norms are in bijection with left-invariant
metrics on L.

Note that the group-norm generates a right and a left norm topology via the
right-invariant and left-invariant metrics d,(w, k) := ||wk™|| and d;(w, k) := |Jw™ k| =
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d.(w™, k7). A group-norm is N-homogeneous if for each n € N,
[w"[| = nllw] (Vw € £).
Now, let (L, ||.]|) be a normed group and w € L. The set
B,(w,r) :=={k € L: |[kw™!|| <1},
is called open ball with center at w and the set
B.(w,r) :={ke€L:|kw | <1},
is called closed ball with center at w [2].
For normed group (L, |.||), element w € L is called limit of a sequence w,,

w = lim w,,
n—oo

if for every ¢ € R, € > 0, there exists positive integer ny depending on € such
that ||w,w™t|| < € for every n > ng. Also, the sequence w, in L is called Cauchy
sequence, if for every € € R, € > 0, there exists positive integer ng depending on €
such that [Jw,w;, || < € for every a,b > ngy. So, a normed group £ is called complete
if any Cauchy sequence of elements of £ converges in group L, i.e. it has a limit in
the group.

DEFINITION 1.2. A Banach group is a normed group (L, ||.||), which is complete
with respect to the metric

dw, k) = |lwk™|, (w,k€L).

A map v : L — K, of a normed group (L, ||.||z) into a normed group (K, ||.||x)
is called continuous, if for every as small as we please € > 0 there exist such ¢ > 0,
that [|wk™!|z < 6 implies

Iy (w)y(k) "k < e
2. Main Results

The notion of convexity in normed spaces is used to prove fixed point theorems. In
this section, we prove fixed point theorems in midconvex and closed subsets of a
Banach group. We start with the definition of a 3-convex (or midconvex) subset of
a group.

DEFINITION 2.1. [2] Let £ be a group. A subset S of £ is called 3-convex (or
midconvex), if for every s,t € S there exists an element ¢ € S, denoted by (st)z,

such that ¢ = st.

LEMMA 2.2. Let (L, ]|.]]) be a Banach group and A be a nonempty closed subset
of L and let v : A — A be a mapping such that satisfying

[ (w)ep (k) M| < ([l (w)7H] + IRy (k)]
for all w,k € L and 0 < n < 1. If for arbitrary point a € A there exists b € A
such that [P (D)0~ < riljv(a)a™| and [[ba™Y| < 7ol (a)a™t||, when there exist
constants 1,79 € R such that 0 < r; < 1 and ro > 0, then 1 has at least one fixed
point.
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PROOF. For an arbitrary element ay € A define a sequence (a,)>%, C A such
that

¢ (ans1)an iyl < rillv(an)a, |,

and
lansra, || < rallv(an)a, |
for n =1,2,.... It is easy to see that (a,)5, is a Cauchy sequence, since
lansia, || < rallvo(an)a, || < rarfllv(ao)ag |-

Because A is complete, there exists ¢ € A such that lim a, = ¢. Then
n—o0

I (e)e™ | < lle(e)db(an) M + I (an)ay | + llanc™ |
<0 [lev ()M + lant(an) ] + ¥ (an)ay | + lanc™ |,

and
_ n+1 _ _
(o)™l < T— |I¢(an) o+ = llanc™|
77+ - -1 1 -1
< —ri|v(ag)a + ancC — 0,
e tl[v(ao)aq | 77|| I
as n — 00. So, ¥(c) = c. O

THEOREM 2.3. Let S be a nonempty, closed and %—com)ex subset of Banach group
(L,||.]) and let ¢ - S — S be a mapping such that

() () < [llsw(s) = I+ It () 7]

forall s,t € S andn < 1. If the norm is N-homogeneous and for s € S, the equation
Ap(c)™! = s has a solution in S, then v has a unique fized point in S.

PROOF. For s € S, let ¢ = ()(s)(c))2. Then
lew (@)l = N (s)e) )™
= @)™
OGN
< S(lsv(s) 1+ lew (@)1,

Hence

lew(e) ) < 5

Using the triangle inequality we obtain

1 1
lles™ Il < Slle(e)s ™ < S(IeCe)e™ I + lles™)-

n
2 llsws) 7.
2

So,
les™H < llew(e)7HE < wllsw(s) 7,
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S

where £ = 27 < 1.
2
For arbitrary sy € S, we define a sequence (s,)%2; C S in the following manner:
1
Snt1 = (800 (Sn11))2.

By Lemma(2.2), this sequence is converges to z and ¢ (z) = z. It is obvious that z
is unique. 0]

THEOREM 2.4. Let S be a closed and %—convex subset of a Banach group. If the
group 1is abelian and the norm is N-homogeneous and o : S — S be a mapping which
satisfies the condition

Ise(s) M| + [lta(t) | < st~
for all s,t € S, where 2 < k < 4, then « has at least one fized point.
PROOF. Let for arbitrary element sy € S, a sequence (s,)52; be defined by

Sn+1 = (Sna(sn))% (n =0,1, 2)
Then we have

anY(Sn)_l = 83187:101(370_1 = (SnS;J,l-l)27
and since the norm is n-homogeneous, ||s,a(s,) 7| = [|(sns511)%l = 2|sns14]l- So,

for s = s,,_1 and t = s,,, we have
2||sn-15," || + 2llsnspiall < Kllsn-15al-
K—2

Hence ||s,s,11]| < m||sn_1s,'||, where 0 < m = 22 < 1, as 2 < £ < 4. Then

(sn)22, is a Cauchy sequence in S and hence converges to some z € S. Since
lza(sn) 7M1 < Nlzsy ll + lsaa(sa) 7 = llzsy 'l + 255,14,

then
7111_I>IC>IOC¥(S”) = z.
Therefore, for s = z and t = s,,, we have
lza(2) "l + 25 ll < wllzs, .
This implies a(z) = z, when n tends to infinity. O

COROLLARY 2.5. Let S be a closed and %-convex subset of a Banach group and
a: S — S be a mapping which satisfies the condition

Isa(t)~H| + Ifta(s) M| < ellst™"],
for all s,t € S, where 0 < v < 2. Then « has a fized point.
ProoF. Using the triangle inequality we have
Isa(s)~H | + [lta(t)~H| = [lst™ ta(s) | + [lts™ sa(®) "]
< st + llte(s) =M+ [lEs~HT + [lset) .

Thus,
[sa(s) ™M + [fta(®) M| < ellst™| + 2([st™1].
Therefore, we conclude that « satisfies Theorem 2.4 with k = ¢ + 2. 0
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1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer in 1952
to study some problems in nonharmonic Fourier series, reintroduced in 1986 by
Daubechies, Grossmann and Meyer.
Let H be a separable Hilbert space. A sequence (f;)2, in H is a frame if there exist
constants 0 < A < B < oo such that

AllfI* < Z [(f f)l* < BIfI?, VfeH.

If only the right-hand side inequality is required, it is called a Bessel sequence.
Many generalizations of the notion of frames such as p-frame and g-frame were
presented by many authors [1, 5]. In [4] the authors unified p-frames and g-frames,
and introduced the notion of von Neumann-Schatten p-frames. This paper addresses
theory of von Neumann-Schatten p-frames.
Let X be a separable Banach space and X* be its dual space. If X is reflexive, we
characterize von Neumann-Schatten p-frames and von Neumann-Schatten p-Riesz
bases in terms of operators. We show that the set of all von Neumann-Schatten p-
Bessel sequences for X, is a Banach space. If X is a reflexive Banach space, we prove
that the set of all p-frames for X and the set of all p-Riesz bases for X* are open
subset of B. In this case, we can say that they are stable under small perturbations.
Finally, we characterize the Banach spaces X which have a von Neumann-Schatten
p-frame or a von Neumann-Schatten p-Riesz basis.

First, we recall some facts about the theory of von Neumann-Schatten p-class of
operators. Our main reference is [3].
Let H be a separable Hilbert space and let B(H) denotes the C*-algebra of all
bounded linear operators on H. For a compact operator A € B(H), let s1(A) >
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S9(A) > -+ > 0 denote the singular values of A, that is, the eigenvalues of the posi-
tive operator |A| = (A*A)z, arranged in a decreasing order and repeated according
to multiplicity. For 1 < p < oo, the von Neumann-Schatten p-class C, is defined to
be the set of all compact operators A for which "%, s?(A) < co. For A € C,, the
von Neumann-Schatten p-norm of A is defined by
1 1
1Al = (D sP(A)7 = (tr|AP)7,
i=1

where tr is the trace functional which defines as tr(A4) = > __.(Ae,e), and & is any
orthonormal basis of H. The normed linear space C, is a Banach space with respect
to the norm ||.||,. If A € C, and B € C,, then AB € Cy, tr(AB) = tr(BA), and
JABIly < Al I B, whenever 241 = 1.
It is known that the space Co with the inner product (A, B) = tr(B*A) is a Hilbert
space.
For 1 < p < oo, we consider the Banach space

D = {A=(A)Z: A cClieN) A= Z lA4l)» < oc}.

In particular, @,C, is a Hilbert space with the inner product (A, B) = "2 tr(B;A;).

DEFINITION 1.1. A countable family G = {G;}32, of bounded linear operators
from separable Banach space X to C, is a von Neumann—Schatten p-frame for X
with respect to H if there exist constants A, B > 0 such that

Al < ST IGFIE)F < BIIfIl, Vf € X.
=1

It is called a von Neumann-Schatten p-Bessel sequence with bound B if at least the
second inequality is satisfied.

DEFINITION 1.2. Let G = {G,;}22, be a von Neumann-Schatten p-Bessel sequence
for X. Its analysis operator is defined by Ug : X — &,C, with Ug(f) = (G:(f)).
Furthermore, Ty : &,C, — X* by Tg((A;)) = > o) AiG; is called the synthesis
operator of G = {G,;}2,

LEMMA 1.3. [4] If G = {G;}2, is a von Neumann-Schatten p-frame for X, then
X s reflexive.

In [4], the authors have proved that G = {G;}32, is a von Neumann-Schatten
p-Bessel sequence a bound B if and only if 7y is a well defined bounded operator
with || 75| < B. Moreover, if X is reflexive, then Ug = T5. If H = C, then
B(H)=C, =C, =C,®,C, = {7 and also ,C, = ¢4. Hence, a p-frame for X can
be considered as a von Neumann-Schatten p-frame for X with respect to C.

DEFINITION 1.4. Let 1 < ¢ < oco. A countable family G = {G;}2, where

% + é = 1 is called a von Neumann-Schatten g-Riesz basis for X* with respect to H
if
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(1) {feX: G(f)=0VieN} =0,
(2) there are positive constant A and B such that for any finite subset / C N
and {A;} € ©,C,
1 1
A IAND T < 1D AGH < BO AL
icl icl iel

LEMMA 1.5. [2] Let X be a reflexive Banach space and let {G;}32, C B(X,C,)
be a von Neumann-Schatten q-Riesz basis for X*. If the g-Riesz basis bounds of

{Gi}2, are Ag and Bg, then {G;}2, is a von Neumann-Schatten p-frame for X
with p-frame bounds Ag and Bg.

PROPOSITION 1.6. [4] Let X be a reflexive Banach space and G = {G;}3°, be
a von Neumann-Schatten p-Bessel for X. Then G = {G;}32, is a von Neumann-
Schatten p-frame for X if and only if its synthesis operator is a surjective operator.

2. Main Results
First, we give a characterization of von Neumann-Schatten p-frames for X.

PROPOSITION 2.1. Let X be a reflexzive Banach space and G = {G;}°, be a von
Neumann-Schatten p-frame for X. If T € B(X), then {G/ T}, is a von Neumann-
Schatten p-frame for X if and only if T is bounded below.

In the following proposition, we give a characterization of von Neumann-Schatten
p-Riesz bases for X*.
PROPOSITION 2.2. Let X be a reflexive Banach space and G = {G;}32, be a von
Neumann-Schatten p-Bessel for X. Then the following statements hold:
(1) G ={G;}2, is a von Neumann-Schatten p-Riesz basis for X* if and only if
its synthesis operator is invertible.
(2) If T € B(X), then {G;T}2, is a von Neumann-Schatten p-Riesz basis for
X* af and only if T is invertible.

Denote by B the set all von Neumann-Schatten p-Bessel sequences for X. For
every G = {G;}2,, F = {F;}2, € B and a € C, define:

G+ F={G;+ Fi} 24, aG = {ag}i2,
1Gllo = 1Ugll = sup [[{Gi(f)}:iZ1]lp-
IflI<1

We can easily see that B is a normed linear space over C.

THEOREM 2.3. Let B(X, ®,C,) be the set of all bounded linear operators from X
into @,C,. Then, there exists an isometrically isomorphism from B onto B(X, ®,C,)
and (B, ||.||o) is a Banach space.

COROLLARY 2.4. Let X be a reflexive Banach space and let F and R be the set of
all von Neumann-Schatten p-frames for X and the set of all von Neumann-Schatten
q-Riesz bases for X, respectively. Then F and R are open subsets of B.

In the following theorem, we characterize Banach spaces which have a von
Neumann-Schatten p-frame.

327



F. Takhteh

THEOREM 2.5. Let X be a separable Banach space. Then there exists a von
Neumann-Schatten p-frame for X if and only if X is isomorphic to a subspace of
©pCp.

PROOF. Let {G;}2, be a von Neumann-Schatten p-frame for X. Thus its anal-
ysis operator Ug is bounded below. Thus Ug is injective and closed range. Hence,
Ug is an isomorphism of X onto the range of Ug, which is a subspace of ®,C,. Con-
versely, let S be a subspace of ®,C, and U be an isomorphism of X onto S. For
every i € N, put G, = P,U, where P, is the coordinate operator on @©,C,. It is clear
that {F;}32, € B(X*,C,) and for every z € X we have

]l

el < eyl = NEvsEd = 102 < Ol

Hence, (F;)$2, is a von Neumann-Schatten frame for X. O

The following theorem gives a characterization of Banach spaces which have a
von Neumann-Schatten p-Riesz basis.

THEOREM 2.6. A separable Banach space X has a von Neumann-Schatten p-
Riesz basis if and only if X is isomorphic ©,C,.
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ABSTRACT. In this talk, we define ¢-Connes module amenability of a dual Banach algebra A,
where ¢ is a w*-continuous bounded module homomorphism from A onto itself. We obtain the
relation between ¢-Connes module amenability of A and ¢-splitting of the certain short exact
sequence. We show that if S is a weakly cancellative inverse semigroup with subsemigroup Eg of
idempotents and ' (S) as a Banach module over I*(Eg) is x-Connes module amenable, then the
short exact sequence is x-splitting that x is a w*-continuous bounded module homomorphism
from 11(S) onto itself.
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1. Introduction

In [6], the Connes amenability of certain Banach algebras in terms of normal vir-
tual diagonals is characterized by Effros. Ghaffari and Javadi in [7], investigated
¢-Connes amenability for dual Banach algebras, where ¢ is an homomorphism from
a Banach algebra on C. Also, several characterizations of Y-Connes amenability
of semigroup algebras were introduced by these two authors, where x is a nonzero
bounded continuous character on unital weakly cnacellative semigroup S and the
map Y is defined on semigroup algebra ['(S). Weak module amenability for semi-
group algebras is studied by Amini and Ebrahimi bagha in [1].

Recently, in [8], Ghaffari et al. investigated ¢-Connes module amenability of
dual Banach algebras that ¢ is a w*-continuous bounded module homomorphism
from a Banach algebra on itself. In [5, pro 4.4], the author proved that a Banach
algebra is Connes amenable if and only if the short exact sequence splits. In [2], the
concept of module amenability for Banach algebras is introduced. Also, it is proved
that when S is an inverse semigroup with subsemigroup Eg of idempotents, then
[1(S) as a Banach module over U = ['(Eg) is module amenable if and only if S is
amenable. For more information and details of module amenability, we may refer
the reader to [2, 3].

In this talk, we study the relation between ¢-splitting and ¢-Connes module
amenability, where ¢ is a w*-continuous bounded module homomorphism from Ba-
nach algebra A onto A. In fact, we give a characterization of ¢-Connes module
amenability of a dual Banach algebra in terms of so-called ¢-splitting of the certain
short exact sequences (Theorem 2.8). Also, the mentioned concepts and details are
shown for semigroup algebras in Theorem 2.10. In Theorem 2.9, by letting that
A and B are ¢ and 1-Connes module amenable Banach algebras respectively, that
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both of ¢ : A — A and ¢ : B — B, are w*-continuous bounded module homo-
morphisms, we show that this property is transferred from A and B to the special
tensor product of their. In finally, it is presented a corollary and an example in this
direction.

A Banach A-bimodule F is dual if there is a closed submodule E, C E* such
that E' = (E.)*. We say E, predual of E. Throughout the talk, A(A) and A,«(A)
will denote the sets of all homomorphisms and w*-continuous homomorphisms from
the Banach algebra A onto C, respectively.

2. Main Results

The following definitions are analogue to [8]. Let A = (A.)* be a dual Banach
algebra, and U be a Banach algebra such that A is a Banach U-bimodule via,

a.(ab) = (a.a).b, (af).a = «a.(f.a) (a,be Ao, B €l).

A discrete semigroup S is called an inverse semigroup if for each t € S there is a
unique element t* € S such that tt*t = ¢ and t*tt* = t*. The set of idempotent
elements of S is denoted by Eg = {e € S; e = e* = €?}.

Let E be a dual Banach A-bimodule. E is called normal if for each x € E, the maps

A— E; a—ax, a— 1.a,

are w*- continuous. If moreover F is a U-bimodule such that for a € A, a € U and
rekl
a.(a.r) = (a)x, (aa)r=a(ax), (a.x)a=a(r.a),
then F is called a normal Banach left A-U/-module. Similarly for the right and two
sided actions. Also, F is called commutative, if
o.r = 1.0, (vel,xz € E).
A module homomorphism from A to A is a map ¢ : A — A with

ola.a+b.0) = a.p(a) +¢(b).6, ¢lab) = p(a)pd) (a,be A a,B el).

It is obvious that multiplication in A is w*-continuous. Consider A as dual A-module
with predual A,. So, we shall suppose that A takes w*-topology. HOM? . (A) will
denotes the space of all bounded module homomorphisms from A to A that are
w*-continuous.

Now, in the following we present some definitions.

DEFINITION 2.1. Let A = (A,)* be a dual Banach algebra, ¢ € HOM".(A)
and S is an inverse semigroup with subsemigroup Eg of idempotents. let that E
be a dual Banach A-bimodule. A bounded map D;; : A — E is called a module
p-derivation if

Dy(a.a+b.5) = a.Dy(a) £ Dy(b).5,
Dy(ab) = Duy(a).p(b) +¢(a).Du(b), (a,b€ A a, B eld).
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When F is commutative, each z € E defines a module (p-derivation
(Du)e(a) = pla).x — z.p(a), (a € A).

Derivations of this form are called inner module p-derivation.

DEFINITION 2.2. Let A be a dual Banach algebra, & be a Banach algebra such
that A is a Banach U-module and ¢ € HOM?.(A). A is called p-Connes module
amenable if for any commutative normal Banach A-U/-module E, each w*-continuous
module ¢-derivation Dy : A — E is inner.

Recall that if ¢ is identity map on A, then ¢d-Connes module amenability is
called Connes module amenability. Also, by the proof of [2, Proposition 2.1], Connes
amenability of A implies its Connes module amenability in the case where U has a
bounded approximate identity for A. In continuation, example 2.12 shows that the
converse is false. The following definitions are from [5].

DEFINITION 2.3. Let A be a Banach algebra, and let 3 < n € N. A sequence
A B A, B A,

of A-bimodules Aj, Ay, ..., A, and A-bimodule homomorphisms ¢; : A; — A;11
fori € {2,...,n—1} is called exact at position : = 2,...,n—11if ¢, = kerp;. (1)
is called exact if it is exact at every position i =2,...,n — 1.

If the mentioned above sequence has at least three non-zero terms. Then it is
called a short exact sequence. For example,

0—>A1ﬁ>¢42i>./43—>0,

is called a short exact sequence. In the following we define the admissible and the
splitting short exact sequence.

DEFINITION 2.4. Let A be a Banach algebra. A short exact sequence
O: 043 4,8 ... 34, -0,

of Banach A-bimodules A;, As, ..., A, and A-bimodule homomorphisms ¢; : A; —
A1 for i = 1,2,...,n — 1 is admissible, if there exists a bounded linear map
p: Air — A; such that pop; on A; for i = 1,2,... n — 1 is the identity map on
A;1. Further, © splits if we may choose p to be an 4-bimodule homomorphism.

We recall that for Banach algebra A the projective tensor Broduct ARA is a
Banach A-bimodule in the canonical way. Then the map 7 : A®A — A defined
by m(a ® b) = ab , is an A-bimodule homomorphism.

EXAMPLE 2.5. (i) Let A be a unital Banach algebra. The short exact sequence

of Banach A-bimodules, 0 — kerm — ARA 5 A — 0, is admissible.
(17) Let A = (A,)* be a unital dual Banach algebra. Then the short exact
sequence

70— AT owe((ABA)) — owc((ABA)Y) /7 (AL) — 0,
©
of A -bimodules is admissible.
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DEFINITION 2.6. Let S be a weakly cancellative semigroup, S be an inverse
semigroup with idempotents Eg. Let x € HOM? . (11(S)) and I'(S) be a Banach
I'(Es)-module. An element M € owe((I'(S)®1'(S))*)* is a x —owc- virtual diagonal
for 11(9) if

0 M = x(60)M, (x®x, M) =1, (6, € 11(9)).

Let [1(S) = (I'(S).)* be a unital dual Banach algebra. Then we consider the
following short exact sequence of [*(S) -bimodules,

> 0 —1M(S). N owe((IM(S)&1(S9))*) — owe((I'(S)&I'(S)*) /75 (11 (S)s) — 0.

Now, we present an important definition.

DEFINITION 2.7. Let S be a weakly cancellative inverse semigroup. Let ['(S) =
(co(S))* be a unital dual Banach algebra, and let x € HOM".(I*(S)). We say
that > x-splits if there exists a bounded linear map p : owe((IN(9)RI11(S))*) —
I'(S)« = co(S) such that por(x) = x and p(T.9,) = x(d)p(T), for all §, € I'(S),
T € owc((IN(S)RI1(S))*) and 7% : 11(S) @ I1(S) — 11(S).

THEOREM 2.8. Let A be a dual Arens reqular Banach algebra and ¢ €
HOMP.(A). Then A is p-Connes module amenable if and only if the short ex-
act sequences X, p-splits.

Suppose that A, B andA U be dual Banach algebras such that A and B be dual
Banach /-modules and A@B denotes the projective tensor product of A and B. Let
I be the closed ideal of A®B generated by elements of the form a.(a®b) — (a®b).«

fora e A,be Band o € U. ARyB is defined to be the quitiont Banach space @,
that is, A% B = 425 [g].

Let A, B be commutative Banach U-bimodules and let ¢ € HOM,,-(A), ¢ €
HOM?.(B). Consider ARy, B with the product specified by (a ®b)(c®d) = ac® bd
(a,c € A, b,d € B). Let ¢ ® 1) denotes the elements of HOM".(ARB) satisfying
e ®1(a®b) = pla) YD) for all a € A,b € B. ¢ ® 1) induces a map ¢ QY €
HOM.,.(ARyB) with ¢ @y ¢(a ®b) = p(a) © (b) + 1 [4].

By above details, we obtain the following theorem.

THEOREM 2.9. Let A, B aﬁd U be dual Banach algebras, let A, B be unital dual
Banach U- modules and let ARy B be a dual Banach algebra and ¢ € HOM® . (A),
Y € HOM.(B). If A, B are p, -Connes module amenable respectively, then A&y B

15 pRyp-Connes module amenable.

Let S be a inverse semigroup. For s € S, we define Ly, Ry : S — S by L(t) = st,
Ry(t) =ts, (t € S). If for each s € S, L and Ry are finite-to-one maps, then we say
that S is weakly cancellative. We know that if S is a weakly cancellative semigroup,

then (co(S))* = 11(9) [5].

THEOREM 2.10. Let S be a weakly cancellative semigroup, let S be an inverse
semigroup with idempotents Eg, x € HOM".(1'(S)) and let 1'(S) be a Banach
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['(Es)-module. Then ['(S) is x-Connes module amenable if and only if the short
exact sequences X, x-splits.

COROLLARY 2.11. Let S be a weakly cancellative semigroup, let S be an inverse
semigroup with idempotents Eg and let I*(S) be a Banach I*(Es)-module. Then I*(S)
is Connes module amenable if and only if the short exact sequences ¥y —;q splits.

In the following, we present an example of above corollary.

ExaMPLE 2.12. Let (N;V : N — N) be the semigroup of natural numbers with
maximum operation. We know that N is weakly cancellative, because

Ly:N— N, Lin)=sn and Ry : N — N, Ri(n)=mns; (n€N),

are not one to one. Then [!(N) is a dual Banach algebra that (co(N))* = I!(N). By [5,
Theorem 5.13], ['(N) is not Connes amenable. Moreover, ['(N) is module amenable
on ['(Ey), so it is Connes module amenable (see [3]). Suppose that M is a y — cwc-
virtual diagonal for ['(N). Now if we define p : cwe((IN(N)®I*(N))*) — I*(N), by

(6, p(T)) = (T.6,, M), (n €N,4, € I'(N),T € cwe((I"(N)®I'(N))*)).
We obtain
(On, por (X)) = (T3 (X)-0n, M) = (73 (X), On-M) = x(6,) (T3 (x), M) = x(6n)-
Next for m,n € N, d,, 6,,, € ['(N) we have
(Oas P(T-0,)) = (T- GGy MY = (T, 8,0 M) = X (8,8, )(T, M)
= X (00 )(T', 6. M) = X (00 )(T-0n, M) = X(02) (O, p(T))-

All in all, the short exact sequences ¥,—;4 splits.

References

1. M. Amini and D. Ebrahimi Bagha, Weak module amenability for semigroup algebras, Semigroup Forum 71 (2005)
18-26.

2. M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004) 243-254.

M. Amini, A. Bodaghi and D. Ebrahimi Bagha, Module amenability of the second dual and module topological

center of semigroup algebras, Semigroup Forum 80 (2010) 302-312.

H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.

. M. Daws, Connes amenability of bidual and weighted semigroup algebras, Math. Scand. 99 (2) (2006) 217-246.

E. G. Effros, Amenability and virtual diagonals for Von Neumann algebras, J. Funct. Anal. 78 (1) (1988) 137-153.

. A. Ghaffari and S. Javadi, ¢-Connes amenability of dual Banach algebras, Bull. Iranian Math. Soc. 43 (1) (2017)

25-39.

8. A. Ghaffari, S. Javadi and E. Tammi, p-Connes module amenability of dual Banach algebras, J. Algebraic
Systems. 8 (1) (2020) 69-82.

9. M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Func. Analysis.
1 (4) (1967) 443-491.

E-mail: aghaffari@semnan.ac.ir
E-mail: tamimi ebrahim@semnan.ac.ir

il

333


mailto:aghaffari@semnan.ac.ir
mailto:tamimi_ebrahim@semnan.ac.ir




The 51** Annual Iranian Mathematics Conference University of Kashan, 15-20 February 2021

Some Inequalities for the Numerical Radius

Hosna Jafarmanesh*
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar,
P.O. Box 397, Iran
and Maryam Khosravi
Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of

Kerman, Kerman, Iran

ABSTRACT. In this paper, we prove numerical radius inequalities for products of Hilbert space
operators. Our results can be looked at as refined and generalized earlier well-known results.
Keywords: Numerical radius, Operator norm, Inequality, Refine.

AMS Mathematical Subject Classification [2010]: Primary 47A63, Secondary
47A99.

1. Introduction

Let B(H) denote the C*-algebra of all bounded linear operators on a complex Hilbert
space H. A selfadjoint operator A € B(H) is called positive if (Az,z) > 0 for all
x € H. We write A > 0 if A is positive. The operator A is called strictly positive if
A is positive and invertible. For self adjoint operators A, B € B(H) a partial order
is defined as A > Bif A— B > 0.

A continuous real valued function f(resp.g) defined on interval J is said to be
operator monotone or more precisely, operator monotone increasing(decreasing) if
for every two positive operators A and B with spectra in J, the inequality A < B
implies f(A) < f(B)(g(A) > g(B)). As an example, it is well known that a power
function 2P on (0,00) is operator monotone if and only if p € [0, 1] and operator
monotone decreasing if and only if p € [—1,0].

For positive invertible operators A, B € B(H), the weighted operator arithmetic,
geometric and harmonic means are defined respectively, by

Av,B=(1-v)A+vB,
Af,B = Az(A"2BA"2)" Az,
ALB = ((1-v)A™ +vBH) 7,

where v € [0,1]. When v = %, we drop the v from the above notations.
The spectral radius and the numerical radius of A € B(H) are defined by
r(A) =sup{|A| : A€ sp(A)} and

w(A) = sup{|(Az, )| : @ € H, ||e] =1},

respectively. It is well-known that 7(A) < w(A) and w(.) defines a norm on B(H),
which is equivalent to the usual operator norm ||.]|.
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In fact, for any A € B(H),
1
0 LAl < w(a) < AL
Kittaneh [5] has shown that for A € B(H),
1 *
2) GFA) < SIAR + AP,

which is a refinement of right hand side of inequality (1).
Dragomir [2] proved that for any A, B € B(#) and for all p > 1,

1
Q WP(BA) < (A AP + (B BY.
In [7], it has been shown that if A, B € B(H) and p > 1, then
() W(BA) < ZI (ALY + (BBYI| + Ju(ABY),

which is generalization of inequality (3) and in particular cases is sharper than this
inequality. Shebrawi et al. [6] generalized inequalities (2) and (3), as follows:
If A,B, X € B(H) and p > 1, we have

(5) W'(A'XB) < %H(A*IX*IA)”Jr (B[ X[B)"]|

In this paper, we first derive a new lower bound for inner-product of products
A*X B involving operator monotone decreasing function, and, so we give refinement
of the inequalities (3) and (5). We prove a numerical radius, which is similar to
(4) in some example is sharper than (4). In the next, we present numerical radius
inequalities for products of operators, which one of the applications of our results is
a generalization of (2).

2. Main Results
In order to achieve our goal, we need the following lemmas.
LEMMA 2.1. [3] Let 0 <mlI < AAB< MI,0<v<1!,<7,0, <v, and

® be a positive unital linear map. If h is an operator monotone decreasing function
on (0,00), then

h(®(A))o,h(®(B)) < kh(®(A7,B)),

(M + m)?
AmM

LEMMA 2.2. [1] Let Ala AQ, Bl, BQ € B(H) Then

where k = stands for the known Kantorovich constant.

1
T(A1B1+AQBQ) S E(W(BlAl)‘l‘W(BzAz))

1
+ 5\/(“’(31141) — w(B2A3))? + 4| By As||[| B2 Ar .
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LEMMA 2.3. [4] Let A,B € B(H) such that |A|B = B*|A|. If f and g are
nonnegative continuous function on [0,00) satisfying f(t)g(t) =t (t > 0), then for
any vectors x,y € H

[{(ABz, y)| < r(B)|[f(1ADllg(|A"Dyll-

Now, we are ready to present our first result.

THEOREM 2.4. Let A, B, X € B(H) and f,g are non-negative continuous func-
tions on [0,00) in which, f(t)g(t) =t, (t > 0).
If 0 < ml < B*f*(|X|)B, A*¢*(|X*|)A < MI, h:[0,00) — [0,00) is an operator
monotone decreasing function and o is an arbitrary mean between <7 and !, then for
any unit vextor x € H,

[1(B* (XD B)oh(Ag(X* DA < "h (A" X B)a, 2)])

(M—l—m)Q.

h k=
where, I

In particular,
|n(B* XD B)oh(A*g? (X7 A)|| < h((A*XB).2)]).

Applying Theorem 2.4 to the decreasing convex function h(t) =t~ and
o=v(= V%), we reach the following corollary:

COROLLARY 2.5. Let A,B,X € B(H) and f,g are non-negative continuous
functions on [0, 00) satisfying f(t)g(t) =t, (t >0). If
0<ml < B*f*(|X|)B, A*¢*(|X*|)A < M1, then

(6) (A XB) < V|| B (XD BIAG(X DA

Furthermore, for increasing conver function h' : [0,00) — [0,00) s.t. h'(0) = 0, we
have

mk
<
- 2M
In particular, for all p > 1

h (w(A*XB))

W (B AXDB) + 1 (A2 (X )A) |

(7) w?(A*XB) < % |(B* (| X])B)” + (A*g*(|X*)A)"||-

By taking f(t) = g(t) = ¢2 in an inequality (6) we get a refinement of inequality
(5) for p = 1, and if we put f(t) = g(t) = 2 in (7), we present a refinement of
inequality (5).

In the next theorem, we give an inequality similar to (4).

THEOREM 2.6. Let A,B € B(H). Then for all non-negative non-decreasing
convex function h on [0,00), we have

Mw(A'B)) < Sh(IAIBI) + 3h(w(BA).
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COROLLARY 2.7. Let A, B € B(H). Then for all p > 1 we have
1 1
W(A'B) < SlIAIPIB]" + Swh(BAY).

COROLLARY 2.8. Let A € B(H), A = U|A| be the polar decomposition of A,
and f, g be two non-negative continuous functions on [0, 00) such that f(t)g(t) =t
(t>0) and let
flﬁg = f(JA])Ug(|A|) be generalize the Aluthge transform of A. Then for allp > 1,

P(A) < SIFQADIPIG(AD I + S (A,

THEOREM 2.9. Let A, B, X € B(H) satisfying |A*| X = X*|A*| and f,g be two
non-negative continuous functions on [0,00) such that f(t)g(t) =t (t > 0). If h is
a nonnegative increasing convex function on [0, 00), then

h(w?(A*XB)) < ||(1 = v)h(r*(X)(B* f2(JA*)B)™) + vh(r*(X) g~ (|A]) |,
for all 0 < v < 1. Moreover, in special case for r(X) <1 and h(0) =0, we have
h(w?(A* X B)) < r*(X)|[(1 = v)h((B* f2(|A*|)B) ) + vh(g~ (JA)])]|-
Letting f(t) = t'7 and g(t) = t” for 0 < v < 1 in Theorem 2.9 we get
COROLLARY 2.10. Let A, B, X € B(H) satisfying |A*|X = X*|A*|. Ifhis a

nonnegative increasing convez function on [0,00), then for all0 < v <1
B(WHAXB)) < (1 = Wh(r2(X) (B A2B)) + vh(-(X)|AP).
Inparticullar, for r(X) <1 and h(0) =0
h(w?(A*XB)) < r*(X)|[(1 — v)h(B*|A*]’B) + vh(|A]*)||.

References

1. A. A. Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia
Math. 216 (2013) 69-75.

2. S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces,
Sarajevo J. Math. 5 (18) (2009) 269-278.

3. H. Jafarmanesh, M. Khosravi and A. Sheikhhosseini, Some operator inequalities involving operator monotone
functions, Submitted.

4. F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (2) (1988)
283-293.

5. F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (1) (2005) 73-80.

6. K. Shebrawi and H. Albadawi, Numerical radius and operator norm inequalities, J. Inequal. Appl. 2009 (2009)
492154.

7. M. Sattari, M. S. Moslehian and T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space
operators, Linear Algebra Appl. 470 (2014) 1-12.

E-mail: hosna. jafarmanesh@yahoo.com
E-mail: khosravi m@uk.ac.ir

338


mailto:hosna.jafarmanesh@yahoo.com
mailto:khosravi$_-$m@uk.ac.ir

The 51** Annual Iranian Mathematics Conference University of Kashan, 15-20 February 2021

Boundednes of Generalized Weighted Composition Operators
Between Zygmund Type Spaces

Mostafa Hassanlou™
Engineering Faculty of Khoy, Urmia University, Urmia, Iran
and Amir Hossein Sanatpour

Department of Mathematics, Kharazmi University, Tehran, Iran

ABSTRACT. In this paper some estimates for the boundedness of generalized weighted composi-
tion operators between Zygmund type spaces are presented.

Keywords: Generalized weighted composition operator, Weighted composition
operator, Zygmund type space, Bloch type space.

AMS Mathematical Subject Classification [2010]: 47B38, 47B33, 46E15.

1. Introduction

For the Banach spaces X and Y, the space of all bounded operators T': X — Y is
denoted by B(X,Y) and the operator norm of T' € B(X,Y) is denoted by ||T']| x—y-
The closed subspace of B(X,Y’) containing all compact operators 7' : X — Y is
denoted by K(X,Y'). The essential norm of T' € B(X,Y’), denoted by ||T||e.x—y, is
defined as the distance from 7" to (X, Y), that is

|T||e.x—y = Inf{||]T — K||x>y : K € K(X,Y)}.

Let D denote the open unit ball of the complex plane C and H (D) denote the
space of all complex-valued analytic functions on D. By a weight v we mean a strictly

positive bounded function v : D — R*. The weighted-type space H consists of all
functions f € H(D) such that

£l = ilélgV(Z)!f(z)! < 0.

For a weight v, the associated weight v is defined by

(z) = (sup{|f ()| : f € HZ [ f]l, < 1) 7"
It is known that for the standard weights v,(z) = (1 — |2|*)%, 0 < a < 00, and for

the logarithmic weight vg(2) = (log ﬁ) , the associated weights and weights

are the same.
For each 0 < a < 00, the Bloch type space B, consists of all functions f € H(D)
for which

1/ lls5. = sup(l — [2[%)°1f'(2)] < o
ze
The space B, is a Banach space equipped with the norm

1 llg = 1O+ [ flls8a

*Speaker
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for each f € B,. The little Bloch type space B, is the closed subspace of B, consists
of those functions f € B, satisfying

lim (1~ [22)°|()] = 0.

|z]—1

The classic Zygmund space Z consists of all functions f € H (D) which are continuous

on the closed unit ball D and

(40410) 4 J(eH0D) — 27 (")
h

where the supremum is taken over all # € R and h > 0. By [1, Theorem 5.3],
an analytic function f belongs to Z if and only if sup,.p(1 — |2[2)]f"(2)| < oc.
Motivated by this, for each 0 < a < 0o, the Zygmund type space Z, is defined to be
the space of all functions f € H (D) for which

1flsz. = Sug(l — 2" (2)] < o0
zE

sup 1/ < 00,

The space Z, is a Banach space equipped with the norm

11l z. = 1F O+ 1O + [ fllsz.,

for each f € Z,. The little Zygmund type space Z, is the closed subspace of Z,
consists of those functions f € Z, satisfying

lim (1 |=)°] ()] = 0.

|z|]—1

Let u and ¢ be analytic functions on D such that (D) C . The weighted

composition operator uCl, is defined by uCy,f = u- f oy for all f € H(DD). When
u = 1 we get the well-known composition operator C, given by C, f = fop forall f €
H(D). Weighted composition operators appear in the study of dynamical systems
and also it is known that isometries on many analytic function spaces are of the
canonical forms of weighted composition operators. Operator theoretic properties
of (weighted) composition operators have been studied by many authors between
different classes of analytic function spaces. See, for example, [6] and the references
therein.

For each non-negative integer k, the generalized weighted composition operator
DY, is defined by

Dy f(2) = u(2) [P (p(2)),
for each f € H(D) and z € D. The class of generalized weighted composition op-
erators include weighted composition operators uCy, = Dg’u, composition operators
followed by differentiation DC, = D}O#)/ and composition operators proceeded by
differentiation C,D = D, [4]. Also, weighted types of operators DC,, and C,D

are of the form DY, that is uDC, = D}, and uC,D = D, [5]. We refer to

(2, 3, 7, 4, 8, 9] for more information about these operators.
It is known that for each n > 2 and 0 < o« < o0 we have

(= [Py
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for all f € B, and z € D, see [9]. Therefore, for each n > 2 and 0 < a < oo we have

1 ot < Ifllz
( ) ’f (Z)’ — (1 _ |Z|2)a+n_17
for all f € Z, and z € ID. Note that, by the definition of Zygmund type spaces, it
is clear that (1) also holds in the case of n = 1.

In this paper, for real scalars A and B, the notation A < B means A < ¢B for
some positive constant c. Also, the notation A ~ B means A < B and B < A.

2. Main Results
For each a € D, the following test functions in H (D) will be used in our proofs
1 — |a]?)? 1— |a]?)? 1 —|al?)*
e [ el . i K9 I Ut
(1 —1az) (1 —az) (1 —az)

In the next three theorems, we give three different characterizations for the bound-
edness of D , 1 Z, = Zp.

fa(z) =

THEOREM 2.1. Let u € H(D), ¢ be an analytic selfmap of D and (n,a) # (1,1).
Then for each 0 < B < oo, D, : Z4 — Zp is bounded if and only if

supja_2||DZ7u]j+1Hgﬁ < 00,
Jj=1
where I'(2) = 27 for each 7 > 1 and z € D.

THEOREM 2.2. Let u € H(D), ¢ be an analytic selfmap of D and (n, o) # (1,1).
Then for each 0 < B < oo, Dj , : Zo4 — Zp is bounded if and only if u € Z5 and

Sug(l — 2P lu(2)¢"(2)] < o0,
FAS

sup(l - [2[*)712u (2)¢/ (2) + u(2)¢" (2)] < oo,

sup ||Dgyufa||zﬂ < 00, Ssup ||nguga||gﬁ < 00, Ssup ||D$7uha||gﬁ < 0.
a€eD acD a€D

Set
A0 =20 s )
Blu gt ) =swp =B (2) + ule) o)
(- Py

Clu, 9, f,m) =sup i ISO(ZNZ)QM|U(Z)90’2(2)|~

THEOREM 2.3. Letu € H(D), ¢ be an analytic selfmap of D and (n,«) # (1,1).
Then, the following statements are equivalent for each 0 < f < oo

i) D3, Za — 25 is bounded.
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it) max{A(u, ¢, @, B, ), B(u, ¢, a, 8,n), Clu, ¢, a, B,n)} < 00. Moreover, this
s also equivalent to

HIaX{”UHZﬁ, B(U, ¥, &, /87 1)7 C(U, P, A, 57 1)} < 00,
in the special case of n =1 and 0 < a < 1.
In the case of n =1 and a = 1, we have the following result.

THEOREM 2.4. For each 0 < 8 < 00, D;’u : Z — Zg 15 bounded if and only if
i) sup,ep(l — |Z|2)B|UH<Z)| log 1_\4,1(2)\2 < 00,
.o 1—|2]2)#

i) sup.ep {am [2¢/(2)¢'(2) + u(2)¢"(2)| < oo,

—|2]2)8

iii) sup,ep %]u(z)gpg(zﬂ < 00.

PROOF. Suppose that Djw : Z — Zg is bounded. Then, by applying D;’uz,
D; 2% D} ,2* € Zg we get u, (u'¢' +up”),up? € Z3. Also, by defining
(1—1a)? ,(A—lal®)® (@ —]a*)!
1—az (1—az)? (1—az)3’

ko(z) =3

for each a,z € D, one can see that k, € Z, sup,ep [|kallz < o0, K, (p(a)) = 0,
——3
ki (p(a)) =0 and k7, (p(a)) = 16—29__ Therefore, from the definition of the

(1=lp(a)]?)?"
norm in Zygmund spaces and using ug? € Zg, the following can be obtained

QPP
WP el e (@ < oo

In order to prove (ii), for each a,z € D, define the test functions

L —laP)? (A —lal)® (1 —]a?)*
1—az (1 —az)? (1—az)3"

lo(2) =8

Then, one can prove (ii) by a similar approach as in (iii) and using the facts [, € Z,
2

SuPucn a2 < 00, 14y (@) = 0, ) (pla) = 0 and I, (pla) = —2—20

In order to prove (7), consider the test functions

L hE@) (o1 N
L2 =" 2a) (lgl—wan?) ’

for each a,z € D, where h(z) = (z — 1) ((1+log 5)? 4+ 1). Then, one can see
that t, € Z, sup,ep ||tallz < oo and  (¢(a)) = log W. Since the operator
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D, : Z — Zgis bounded, we get

1
sup (1 —|a[?)?|u"(a)|log ——— < sup ||D} tallz
lp(a)|>1/2 L—le(a)* = @12 7 ?
2¢(a)
+ sup (1—a]®)?|2u/(a)¢ (a) + ula)y” (a)|—
lp(a)|>1/2 1 —|o(a)f?
—_—2
2p(a) 1

+ sup (1 —laf*)’|u(a)¢(a)|
lo(a)|>1/2 (1= lp(a

<o0.

)‘2)2(1+ (log

On the other hand, since u € Z3, we have

2
sup (1 — |a]?)P|u”(a)]log —————= < oo,
lp(@)|<1/2 1—|e(a)l?
which completes the proof. 0

7.

8.

9
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1. Introduction

In various methods, many authors later generalized their fixed point theorems. Co-
incidence point theory on cone metric spaces in [1, 2| are studied. In [4] was
introduced the concept of a coupled coincidence point and they studied fixed point
theorems in partially ordered metric spaces. In [10], Shatanawi proved that coupled
coincidence point theorems on cone metric spaces are not necessarily normal.

Throughout this article, N is a positive integer and Ny = N U {0}. We establish
the results of n-tuple fixed point for a self mapping ¢ and {7, }men, that is a
sequence of mappings from X" into X, in partially ordered cone metric spaces via
a-series, that introduced in [9]. The a-series are wider than the convergent series.
We provide the preliminaries and definitions used throughout the article.

DEFINITION 1.1. Let P C E, where E is a real Banach space with int(P) # ().
If P satisfies

1) P is closed and P # {6}, where 6 represents zero.

2) a,b € RT, x,y € P implies ax + by € P.

3) x € PN —P implies z = 6.
Then P is called a cone.

The cone P C FE is given, we define a partial ordering < with respect to P by
x <y if and only if y —z € P. We write x < y to show that x < y but = # y.
We write z < y if y — 2 € IntP. It is easy to show that AInt(P) C Int(P) for all
positive scalar \.

DEFINITION 1.2. A cone metric space is a pair (X, d), where X is a nonempty
set and d : X? — E is map such that satisfies
1) 0 < d(z,y) for all x,y € X and d(z,y) = 6 if and only if x = y.

*Speaker
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2) d(z,y) =d(y,z) for all z,y € X.
3) d(z,y) < d(z,z) +d(y, z) for all z,y,z € X.
The map d is called a cone metric on X.

DEFINITION 1.3. Let (X, d) be a cone metric space, {z,,} be a sequence in X
and r € X.

1) The sequence {x,} is called converges to x, if for every ¢ € E with § < ¢
there exist a positive integer N € N such that d(z,,z) < ¢ for all n > N.
We denote this by lim, . x, = .

2) The sequence {x,} is called a Cauchy sequence in X, if for every ¢ € E with
0 < ¢, there is an N € N such that d(z,, z,) < ¢ for all n,m > N.

3) The space (X,d) is called a complete cone metric space if every Cauchy
sequence is convergent.

DEFINITION 1.4. [7] Let (X, d) be a cone metric space, f : X — X and z € X.
Then f is said to be continuous at xq if for any sequence x,, — xo, we have fx,, —

Jxo.

DEFINITION 1.5. [8] An element (z,y) € X? is called a coupled coincidence point
of the mappings g : X — X and F : X? — X if F(z,y) = gr and F(y,x) = gy. In
this case, (gz, gy) is called a coupled coincidence point.

DEFINITION 1.6. [5] An element (z,y) € X? is called a coupled fized point of
F: X% Xif
Fz,y) =z, Fly,z)=y.
DEFINITION 1.7. [3] Let (X, <) be a poset (or partially ordered set) and F' :
X? — X. We say that F has the mized monotone property if for any x,y € X

T1,T2 S X7 Ty j ) = F(Il)y) j F(‘r%y)?
y,y2 € X, iy = F(z,y) = F(z,v9),

That is, F'(z,y) is monotone non-decreasing in z and is monotone non-increasing in
Y.
DEFINITION 1.8. [6]. Let X # (). An element (z!,...,2") € X" is called an
n-tuple fived point of the mapping F : X" — X if
vt =Pt 2™ et ), where 1 < i < .
We generalize the definitions of compatibility and weakly reciprocally continuity;,
for a self-mapping ¢g and n-variate mapping F'.

DEFINITION 1.9. Let (X, d) be a cone metric space. The mappings g : X — X
and ' : X" — X are called compatible if for arbitrary ¢ € intP, there exists mg € N
such that

il noo1 i-1 i i+1 noo1 i—1
d(g(F(x;,, x> oo am a0 ), Fgas,, gay oo g gy g2 ) K €,
where 1 <4 < n, whenever m > myg, {x! } are sequences in X, such that
- i itl noo1 i1y _ 1 i i
ml_l)rfooF(asm,xm U N S )—ml_lgloogxm = a,
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for some x' € X. It is said to be weakly compatible if

+1 n 1 i1
U A N L

gr' = F(a', 2’
implies
g(F (2, 2" a2t 2 h) = Fga', g™, g™, g2t ... gt h),
where 1 < i < n, for some (2!,---2") € X"

DEFINITION 1.10. The mappings g : X — X and F' : X" — X are called
reciprocally continuous if

- i il noo1 T NN
mgrfoog(F(xm,xm ey T T X)) = gty and

: i i+1 nooo1 i1y _ i itl no1 i1
lim F(gx,,, gz, ...,gx0 gz,  ...,gx, )= F(z' 2" .. a™ ... 27,

m—+00
whenever {z! },1 <i < n, are sequences in X, such that
lim F(a! ot o 2™ ol o 2t = lim gt =g,

s Ym0 s mo m
m—+00 m——+00

for some 2 € X,1 < i < n.
The new concept of an a-series is introduced by Sihag et al. [9] as follow.

DEFINITION 1.11. [9] Let {a,} be a sequence of positive real numbers. We say
a series Zzg a, is an a-series, if there exist 0 < a < 1 and n, € N such that
Zle a; < ak for each k > n,.

For example, we know that every convergent series is bounded hence every con-
vergent series of non-negative real terms is an a-series. Moreover, there exists also

divergent series that are a-series. For example, :3 }1 is an a-series.

2. Main Results

DEFINITION 2.1. Let (X, =) be a poset and ¢ : X — X, and T,,, : X" —
X, m € Ny are given. We say {7}, }men, has the g-mized monotone property if for
any 2%,y € X,1 <i<n,

gr' = gy’ (if i is odd), and gz’ = gy' (if i is even), imply

T2t 2™ ™t 2 X T (v y™ gty Y (i ds odd),

T (v y ™ oy gty R Tt 2 et 2 ) (if s even),
where 1 < ¢ <n.

DEFINITION 2.2. Let g : X — X and T, : X" — X are given. We call
{Tn}men, and g are satisfied in (K) property if

d(Tm(Ilv cee 7xn)7Tm’(y1a s 7yn))
< B [d(gx1, T (21, . o, ) + d(gyr, To (Y1, - - -, Yn))| + Yo d(gy1, g1),
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for z;,y; € X, where 1 < i < n, with gx; < gy; (if i is odd), and gz;
gyi (if @ is even) or gx; = gy; (if i is odd), and gx; =< gy;(if i is even), 0
+oo (ﬁm,erl + VYm,m+1

m=l - ﬁm,m—i-l

INTY

be an «-series.

Bmm!s Ymm: < 1 for m,m’ € Ny, which

DEeFINITION 2.3. If T and g have non-decreasing transcendence point in its
odd position arguments and non-increasing transcendence point in its even position
arguments, then we call T and g have mized n-tuple transcendence point, if there
exists zh € X" 1 < i < n, such that

gy = To(ab, xbt . af, xg, ... ab ™), (ifi is odd),
gl = To(xh, bt al xb, .. ab™h),  (if i is even).

Before presenting the main result, first consider the sequences that are made in
the following lemma.

LEMMA 2.4. Let (X,d, =) be a partially ordered cone metric space and g and
{Tn}men, are given. {Tp}men, has a g-mized monotone property with T,,(X™) C
9(X). If Ty and g have mized n-tuple transcendence point, then

a) there are sequences {z'} € X,1 <14 < n, such that

i i i+1 n 1 i—1 :
9T =T 1 (T 1 T gy ey T s T gy ey Tomq)y L <0< m,
for m € Nj.
b) sequences {gzt},1 < i < n, are non-decreasing if i is odd and non-increasing
if 1 is even.

¢) if {T}men, and g satisfy the condition (K), then {gxi},1 < i < n are
Cauchy sequences.

Now, we revise Definitions 1.9 and 1.10.

DEFINITION 2.5. Let (X, d) be a cone metric space. The mappings g : X — X
and T,, : X" — X are compatible, if for arbitrary ¢ € intP, there exists my € N
such that

d(g(T (2t ... 2™ xr o a1, T(gat ... ga" gzl ... gt t)) < e,

where 1 < i < n; whenever m > myg, {x¢ },1 <i < n are sequences in X, such that

+1 n 1 z’—l)

lim T, (zy,, 2. T Ty, Xy ) = lim gy, ) 1= 2,

mThee m—+o0
for some x' € X. It is said to be weakly compatible if
gr' = Tp (2", 2 2™ ot 'Y,
implies
g(Tn(a', 2™ ool 0 h) = Talgal, e ga . g™,

where 1 < ¢ <n.
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DEFINITION 2.6. Let (X,d) be a cone metric space and g : X — X and T, :
X" — X are given. {1, }men, and g are called reciprocally continuous if

ml_i}rJrrloog(Tm(x;l,mijl, ot al o i) = ga,
and
ml_lg_loo T(gxt gzttt ... gz, ga:in, . ,gxi;l)
— ml_l)I_Ii_loo Tt 2™ o ™ 2t 2,

whenever {z! },1 < i < n are sequences in X, such that

: i il noo1 -1y _ 1 i i
lim T (@ T Ty oy Xy ) = lim gy ) o= 2,

m——+00 m——+00

for some 2* € X and 1 <i < n.

THEOREM 2.7. Let (X, d, <) be a partially ordered cone metric space. Let g and
{T}men, are gwen. g and {T,,}men, are w-compatible and satisfy the condition
(K). If {T\n}men, have n-tuple coincidence points comparable with respect to g,
then g and {T,, }men, have a unique n-tuple common fized point, that is, there exists
unique (2, -+ ,x") € X™ such that

vt = g(a") = T (2", 2", a2t ), where 1 < i < .

Moreover, common fized point of {T,, }men, and g is of the form (p,...,p) for some
peX.

EXAMPLE 2.8. Let X = [0, 1]. and
P={(xy,...,2,) ER": 2" >0,1<i<n}C E=R"
Define d(z,y) = (Jx — y|, |x — y|). Then (X, d) is a partially ordered complete cone
1

metric space. Define 3, v = o Y = for all m,m’ € N, and consider
the mapping g : X — X and T;,, : X" — X with
T1 4+ T,
g(x) = 3nz, T (xq,...,2,) = e
nm

forallm=1,2,...;2,...,2, € X.
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1. Introduction

Let H be a complex Hilbert space with inner product < -,- >. Also B(H;, Hs)
denote the set of all bounded linear operators from H; into Hy. We use B(H)
instead of B(H, H). Let U be the group of unitary operators in B(H). When H
is of finite dimension n, we use M, instead of B(H) and U, instead of U. Let
C, A € M,. Recall that the C-norm of an operator A is defined by

|Allc = max{|tr(CUAV)|: U,V € U,}.

Which at first defined by J. von Neuman [2]. If C' = diag(1,0,...,0),A € M,,U =
[x1, 29, ..., 2, €U, and V = [y1, Y2, ..., Yn] € U,, then

riAy xiAys oo 11 Ay,
0 0 0
C(UAV)=C : : . : € M,.
0 0 0

So
|Allc = max{|tr(CUAV)|: U,V € U,}

= max{[z" Ay, [lz]| = [[y] = 1}
= max [[Az|| = [[A]l,.

llz]l=1

This shows that C'-norm is a generalization of the operator norm. The following
Theorem, which states in [2], is useful in calculating C-norm of matrices.

THEOREM 1.1. Let A,C € M,, and a1 > ay > -+ > a,,c1 > Cy > -+ > ¢, , be
singular values of A and C, respectively. Then

[Alle = ¥ a;c;.

*Speaker
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As a corollary of the above theorem, let A € M,, with a; be the largest singular
values of A. Then ||Al|s = a;. In the following theorem we see some norm properties
of C-norms.

THEOREM 1.2. [1, Theorem 3.1] Let C' € M,, with the largest singular values c;.
Then, the following statements hold:

i) || |lc is a semi - norm on M,;
ii) || - llc is a vector norm on M, if and only if C # 0;
iii) || - |l¢ s @ matriz norm on M, if and only if c; > 0.

The following proposition, also is useful in C-norm calculations.

ProposiTION 1.3. [1, Corollary 3.2] Let 0 # C, A € M,. Then, the following
properties hold:
i) If U € Uy, then |[U*AU||c = ||Allc = |Allurcu;
ii) If ¢ is the largest singular values of C, then for every k =1,2,...,

1AM le < JAllE e > 1.

In this paper, we are using above properties, to show some inequalities for C-
norm of special 2 x 2 operator matrices. Also we have some examples to show that
equality cannot hold in general.

2. Main Results

We begin with a theorem for 2 x 2 operator matrices. matrices which have operators
as their entries.

THEOREM 2.1. Let A,B € B(H), C € M,, and C' = {g g} . Then
A0 0 A
[ R e
Xy 0], [X2 0 o
PROOF. LetU—[O YJ,V—{O YQ] where X;,Y; € U,. Then,
([ 01X 0] f4 o] [xe o]\|_|, ([cxiAX. 0
"\lo ¢|]o wvi||lo Bl|o w|)|T|" 0  CyMAY,| )|
So,
A DN S Lk (J#H(CXLAXS) + t(CYAY)}
0 Bl|, = xivie 1A% LA
> = = .
2 max {[tr(CX1AX,)[} = [Ale(i = 1,2)
Also we have A
g
> || Bllc-
5 3l
Then,
A0
115 5[ = maxtiane.nzncy.
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A 0 0 A o |ATA 0 e
Now, let T} = 0 B J 15 = B 0}.80 we have 177, = [ 0 B*B],TQTQ—
[BOB A(*) A} and C'C" = {Cg’ C’%* . This shows that singular values of 77 and
Ty are equal. Using Theorem 1.1, one can see easily that ||71|lcr = ||T2||c- O

In following example we use Theorem 1.1 to show that the equality cannot hold
in the above theorem.

4 0 . ¢ o B
EXAMPLE 2.2. Let T' = [0 B] and C" = {0 C’] where A = diag(2,1,3), B =

diag(3,5,1) and C = diag(4,3,1 can see that singular values of A are 2 >
1> %, singular values of B are % % 2 }L also singular values of C' are 4 > 3 > 1,
singular values of C” are 4 > 4 3 >3 >1 > 1 and singular values of T are
2>2>12>3;>1>1 Welist singular values in this way instead of set
way to show repetition of some singular values and to use Theorem 1.1 easily. By
Theorem 1.1 we have HT||C/ =19+ = 12, HAHC = 11+ 5 and ||Bflc = 7+ 1. So,
max{[|Al|c, | Bllc} = 114+ 3 < 194 & = ||T||cr. Also we have ||Allc + || Bllc <

19+ 5 = [|IT||cr-

). W
>
>

By the same manner as in the proof of Theorem 2.1, we can see the following
proposition.

PROPOSITION 2.3. Let A,C € M,,T = [13 8} € My, and € = [g g} <
Ms,,. Then,

[Tl = HAHc-
: 0 0
Using Theorem 1.1, one can see that =
A 0f||,

0 0 e~ _|C 0] [0 C 0 0 0
‘ {O A} " Also if C" = {0 0] , [0 0] [C’ 0] {O C’} {0 D],Where the
largest singular value of D is less than or equal to the smallest singular value of C,
then ‘ [61 8] = ||Al|c. In the following example we show that equality cannot

c

be hold in the above proposition.

EXAMPLE 2.4. Let singular values of A are a; > ay > --+ > a, and singular
values of C' are ¢y > ¢ > -+ > ¢,. So singular values of T" = [0 j(ﬂ are a; >

0 O

0 A*A
hand, singular values of C" are ¢; > ¢ > ¢y > ¢9 > -++ > ¢, > ¢,. For example if
singular values of A are 2 > 1 > % and singular values of C' are 3 > 2 > 1, then
singular values of T'are 2 >1>1>0>0> ... > 0 and singular values of C’ are

o oll.
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1. Introduction

Orlicz-Sobolev spaces play a significant role in many fields of mathematics, such
as approximation theory, partial differential equations, calculus of variations, non-
linear potential theory, the theory of quasiconformal mappings, differential geometry,
geometric function theory, and probability theory.

The existence and multiplicity of solutions for a class of PDE’s problems in Orlicz-
Sobolev spaces are one of the research problem. The Kirchhoff type problem

—M( [, 2(|Vul)dz)div(a(|Vu|)Vu) = Af(z,u) + pg(z,u), in Q
=0, on 0f)

u

is considered in [2] and the existence of infinitely many solutions is proved in the
Orlicz-Sobolev space.

Motivated by the above work, we study the existence of infinitely many weak solu-
tions for the system

—div(on (|Vu]))Vu = AF,(z,u,v), in
(1) —div(as(|Vv])) Vo = AF,(xz,u,v), in Q
u = v =0, on 0f)

where € is an open bounded subset of RY (N > 3), with smooth boundary 99, and
A € (0,+00).

Moreover, F: Q x R x R — R is a function such that F(-, s,t) is measurable in (2,
for each (s,t) € R x R and F(x,-,-) is C' in R x R for every z € Q. F, and F,
denote the partial derivatives of F' with respect to v and v, respectively.
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2. Preliminaries

We introduce some fundamental notions and important properties about Orlicz-
Sobolev spaces, (see [2, 3, 5, 6] and references therein, for more details).

For i = 1,2, assume that «; : (0, +00) — R are two functions such that the mapping
¢; : R — R are defined by

a;(Jt))t  fort #0,
i(t) =
#ilt) {O fort =0,

are odd, strictly increasing homeomorphisms from R onto R. For ¢ = 1,2, we define
D,(t) = [} pi(s)ds for all t € R. Set ®X(t) = [, ;7 '(s)ds, for all t € R. Notice
that ®;, ¢ = 1,2, are Young functions, that is , ®;(0) = 0, ®; are convex, and

o,
Zt(t) = 0 and

lim ®;(t) = +oo. Also, since ®,(t) = 0 if and only if ¢ = 0, lim

t—o0 t—0
P,

lim —l<t>

t—o0

called the complementary functions of ®; and they satisfy ®; () = sup{st—®;(s);s >
0}, for all t > 0. Assume that ®; satisfy that following hypotheses

Tt 0 tpi(t)
1 < lim inf < (p;)" :=su
tmoo Ou(t) () t>Io) ()

e te(t) L log(Dy(t)
N < pi)o:=inf 5oy < minf =

The Orlicz spaces Lg,(€2),7 = 1,2, defined by the N-functions ®; are the spaces of
measurable functions u : {2 — R such that

[ullzs, = Smp{/Q U(x)v(m)dx;/g@f(lv(fv)\)dﬂc <1} < oo

Then (Lg, (), [-]|15,) are Banach spaces whose norms are equivalent to the Luxem-
burg norm

= +o00, then ®; are called N-functions. The functions &

7

1= 1,2, are

<oo; i=1,2,

=1,2.

lullo, := inf{k > 0; /Q @i(@)dx <1}.

The Orlicz-Sobolev spaces W1®i(Q),i = 1,2, are defined by

0
W) = {u € L, (@), 5 € La,(@),5 = L,..., N},
J

These are Banach spaces with respect to the norms |jul|1 e, := ||u]
i=1,2.

Now, we define the Orlicz-Sobolev spaces I/VO1 P (), 7 = 1,2, as the closure of C§°(2)
in Wh®(Q), with equivalent norms: [Jul; := ||| Vul||s,.

The relation (2) implies that ®; and @, i = 1,2, both satisfy the Ay-condition, i.e.
®;(2t) < k®;(t),for all ¢ > 0, where k is a positive constant. Furthermore, we
assume that ®; satisfy in the following conditions:

(2) for each z € Q the function t — ®;(\/t) are convex for all t € [0, c0).

o+ [[Vul]

,; for
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Condition A, for ®; assures that for each ¢ € {1,2} the Orlicz spaces Lg,(€2) are
separable. A, condition and (2) assure that Lg,(€2) are uniformly convex spaces
and thus, reflexive Banach spaces, that implies Orlicz-Sobolev spaces VVO1 ’%(Q),
i € {1,2} are reflexive Banach spaces also.

Now, one can define the reflexive Banach space X := W, (Q) x Wy **(Q) endowed
with the norm [|(u, v)|| = [lull1+[|v[l2, where [[ully := [[[Vullle, and [[o]l2 := [[[Vv][|e,
Here, we recall the following fact from [4].

REMARK 2.1. The Orlicz-Sobolev spaces VVO1 ?i(Q), i = 1,2, are continuously
embedded in W, (Po(()). On the other hand, since (p;)o > N, one can conclude
that W, (Q) < C%(Q) are compact. Thus the embedding X < () x C°(Q)
is compact.

PROPOSITION 2.2. Let u € Wol’q)"(Q), then the following relations are hold

. : O . .
M) [ull# < fo @I Vu(@)Dda < Jull?" if lull > 1, i=1.2
)0 .
(1) Jull” < o @u(IVu(@)dz < [ul 7 if flul <1, =12
We need the following fact from [2, Lemma 2.1].

PROPOSITION 2.3. Let u € Wy"*(Q) and Jo @i(|Vu(z)|)dz < 7, for some 0 <
r < 1. Then one has ||ul|; < 1.

0 0
_ max,eq [u(z)| Y max,eq [v(z)| 2
We set C' := maX{SUpueW(}"bl\{o} ||u||(p1)0 SUD, 1tz 1oy ||v||(p2)o
1 2

For fixed xy € Q, set D > 0 such that B(xy, D) C Q, where B(zg, D) denotes the
ball with center at xy and radius D.

. T(1+ N)(g)(m)o ( oN )

(p1)° * )

1 (C(pi)o + C(P;)O) Qﬂ'% DN(2N - 1)
1+ %)(%)(m)o oN

L(P2)O (DN(2N—]_))

_1 L_\P*" y
<C(P1)O + C @2)° ) o2
3. Multiple Solutions

In this section, first we recall a multiple critical points theorem of Bonanno [1].

THEOREM 3.1. Let X be a reflexive real Banach space, and J, I : X — R be
two Gateaux differentiable functionals such that J is strong continuous, sequentially
weakly lower semi-continuous and coercive, and I is sequentially weakly upper semi-
continuous. For every r > infyx J, let

SUPyeJ—1(—o0,r) [(U) o I(U)

o(r) = inf

ueJ~1(—oo,r) r—= J(u) 7
v = liglﬁgof P(r), 6:= r_l)l(ilzlf)l(rqu)+ ().

Then
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1
(a) If v < 400 then, for each X € (0,—), the following alternative holds: either
Y

(al) hy:=J — A possesses a global minimum, or
(a2) there is a sequence {u,} of critical points (local minima) of hy such that
lim,, oo J(u,) = +00.

1
(b) If § < +o0 then, for each A € (0, 5), the following alternative holds: either

(bl) there is a global minimum of J that is a local minimum of hy, or

(b2) there is a sequence {u,} of pairwise distinct critical points (local minima)
of hy that weakly converges to a global minimum of J with lim, . J(u,) =
ian J.

Our goal is to prove the existence of infinitely many solutions for the problem (1).
Due do this, we introduce the suitable hypothesis and establish an open interval of
positive parameters such that the problem (1) admits infinitely many weak solutions
via Theorem 3.1.

THEOREM 3.2. Assume that
(h1) F(z,s,t) >0 for every (z,s,t) € Q x (RT)2.
(h2) F(z,0,0) =0 for every z € Q.
—_— P, (t
(h3) There exist g € €2, and values D, o > 0 such that B(xq, D) C €, lim+ t(P—(‘)O) <
t—0 v
0, and A < LB, where L = min{L,,y, Ly, } and

D) F(z,s,t)dx

Sy SUD 1 o120 F (2,5, 1) d o2

A =l fuf p S o Ty
where p* = max((p1)°, (p2)°). Then for every A € A := — p*(ﬁ7%)7

c @0 1o )

the problem (1) admits a sequence of pairwise distinct weak solutions which strongly
converges to zero in X.

PROOF. We apply the part (b) of Theorem 3.1 and show that 6 < co. First, we
define the energy functional of problem (1) by hy : X — R:

hy(u,v) = J(u,v) — M (u,v),

where

J(u,v):/Q(I)1(|Vu|)dx+/ﬂ<1>2(|Vv|)d$, and [(u,v):/F(:v,u,v)d:B.

Q

It is well known that J is a coercive, sequentially weakly lower semicontinuous
and Gateaux differentiable functional. Moreover, [ is a sequentially weakly upper
semicontinuous and Gateaux differentiable functional. Let {o,} be a sequence of
positive numbers such that 1_1£1 o, = 0 and

n o

- Jo SUDs |4 |t]<on £ (5 8, t)dx T Jo SUD|s|+t<0 £ (T, 5, t)dx

n——+o0o O'g o—0t O'pgF

=A< +o0.
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p*
Set r, = ( - n - > . For each n € N large enough 0 < r, < 1, then

()T + (O

1

[u@)| + [o(@)] < (Cr) o + (Cro) w0 < ((C)m° +(C)o° )i = o,
We have

—L3 —L\P su F(x,s,t)dx
§ < liminf p(r,) g((c) o +(0) (p;)())p lim inf Jo p|8|+\t|<an* ( )

n—-4o00 n—-4o00 aﬁ
_1 \P"
<((Om7 + (@7 )" A < 4.

So, A CJ0, %[ For A\ € A, we claim that the functional h) is unbounded from below.
There exist a sequence {d, } of positive numbers and n > 0 such that d,, — 0™, and

1 . 1 fB (20.2) F(z,d,,d,)dz
T<n< L((C’) T 4 (C) ) p
Let {w,} C X be a sequence defined by

for any n € N large enough.

0 xEQ\B($OaD)7
wy () = 2g <D {30, (2° — x)? }%>, z € B(xo, D)\ B(xo, 2),
d,, x € B(z, 2).

Since lim 2an = 0, there exist ( > 0 and ny,ny € N such that % € (0,¢), and

n—oo

Dy (2n) < o(2)wr) "d?” for all n > n; and Dy(2n) < (2 )m)od,(lm)o for all n > na.
So, for all n > max{ny,ny}, we have

hy(wn, wy) = J(wy, wy) — M (wy, wy,)

1 dgpl )0 dgm)o
+

< _ ) — )\/ F(z,d,,d,)dz
((c)ﬁ n (@@)p Lipyyo  Lipyy (20, R1)
1—A
< d S (dP” 4+ dP)") < 0 = 1y (0,0),

L{(C)m +(Cyo" )

for every n € N large enough. Then (0,0) is not a local minimum of hy. Thus
Theorem 3.1 case (b) prove the existence of the sequence {(un,v,)} of pairwise
distinct critical points (local minima) of hy such that ||(u,,v,)| — 0. O
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1. Introduction and Preliminaries

A mapping D : R — R, where R is an arbitrary ring, is called an n-Jordan derivation
if D is additive and satisfies

(1) D (z") = Z 27D (z) 2™,

for any x in R, where 2% = r = r2° for any element r in R. The notion of n-Jordan

derivations was introduced by I. N. Herstein [4, p. 528]. In the literature, (1) is
known as the nth power property; see, e.g., [2, 7]. Recall that in the case when R
is an algebra over a field F, we define n-Jordan derivations as F-linear (i.e., linear
over the field IF) mappings satisfying the nth power property.

Note that a 2-Jordan derivation is a Jordan derivation, in the usual sense, on
a ring. It is easy to show that if D is a Jordan derivation, then D is an n-Jordan
derivation for all n > 2, but the converse is not true, in general. For illustration, we
present the following interesting example.

ExaMPLE 1.1. Suppose that n > 3 is a fixed integer and

([ O 1o Q13 -+ a1n 1,41 )
0 0 Qg3 - Qg pn a2 41
A= ; : - N - : D 012,013,. ., Qe €ER
0 0 e 0 Op_1n Ap_1nt1
0 0 s 0 0 Qg1
LLO O s 0 0 0 ] )

Then A is a Banach algebra equipped with the usual matrix-like operations and
with the norm given by the sum of all absolute values of entries. Define the mapping
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D: A— Avia

[ 0 0 0 041,n+1_

0 0 0 0
D(x)=10 0 0 0 :

0 0 apnin O

0 --- 0 0 0

(0 -~ 0 0 0 |

where x is an arbitrary element of A. Then D is a bounded linear mapping on A
and

0 -+ 0 Bigr Big+2 - Bin B1n+1 |
0 -~ 0 0  Bogt2 - Pon Bant1
0O - 0 0 . 0 n—k,n n—k,n
x" = ‘ Prtn Puoimrs (2<k<n),
0 0 0 0 Br—k41,n+1
0O --- 0 0 . 0 0 0
| 0 0 0 ‘e 0 0 0 |
where
J—k+1 j—k+2 j—1 k
Bii= >, > - > e i Q<i<n—k+1,i+k <j<n+1, i =i, ix = j).
11=t+110=17+1 tk—1=tk—2+1 £=1
Hence,
0 -+ 0 I, uina
O --- 0 0 L ,
D (Xn) — ) ] ) ) — Z Xz—lD (X) Xt
: .o : P
O --- 0 0

(n+1)x(n+1)

Thus D is an n-Jordan derivation, but it is not an m-Jordan derivation for all
m=2,3,...,n—1.

Motivated by the study of Johnson [5], who investigated almost multiplicative
maps on Banach algebras, Jun and Park [6] proved that there exists a derivation
near an almost derivation from a Banach algebra C™[0, 1] of differentiable functions
to a finite dimensional Banach C"[0, 1}-module M (i.e., a Banach space M together
with a continuous homomorphism A : C"[0, 1] — B(M), where B(M) denotes the
algebra of all bounded linear operators on M). On almost derivations Semrl in [10]
proved the following.

THEOREM 1.2. Let X be a infinite dimensional Banach space and A(X) be a
standard operator algebra on X. Assume that o : [0,00) — [0,00) is a function with
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the property lim; oot 'o(t) = 0. Suppose that f : A(X) — B(X) is a mapping
satisfying

17 (AB) = Af(B) = [ (A) Bl < e (|A[IIBID) ,

for all A, B € A(X). Then there exists T € B(X) such that f(A) = AT —TA for
all A € A(X) (i-e., f is an inner derivation).

Generally the above result is not true. For instance, let M5 be the algebra of all
2 x 2 real matrices and Ay = { B 8} D a € ]R}. Suppose that f: Ay — M, is a
mapping given by the formula

() g oer
LD E DB
GIEDLI@DEDEI-bY

for all a, 8 € R. Hence, f satisfies assumptions of Theorem 1.2 with a constant
function ¢ but f is not a derivation (see also [1]).

Badora and Miura et al. [1, 8] investigated almost derivations on Banach alge-
bras. In [8], the authors showed that if a Banach algebra 4 has an approximate
identity, or if A is commutative semisimple, then an almost ring derivation on A is
an exact ring derivation.

In this paper, we investigate almost n-Jordan derivations on Banach algebras.

Then,

2. Main Results

We introduce a useful result that can be easily derived from Park [9, Theorem 2.1].

LEMMA 2.1. Let X and Y be vector spaces on C, let ky be a positive integer
and let f : X — Y be an additive mapping. Then, f is C-linear if and only if

FOAx) = A\f(x) for all z € X and \ € S}, = {eio; 0<6< i—ﬁ}
We need the following Lemma in the proof of the next Theorem.

LEMMA 2.2. Let X be a normed space and Y be a Banach space. Assume that
f: X =Y is a mapping such that

(2) 1f Az + Ay) + Af () = Af W) < e (l=l” + llylI*)
for all z,y € X\ {0} and X € S}, where e >0 and p < 0. Then f is C-linear.

PROOF. Letting A = 1 in (2), we observe that f satisfies the inequality

1f(z+y) + f(z) = F@l < e (lzll” + [lyl1”)
for all z,y € X \ {0}. From Theorem 2.1 of [3], it follows that f is additive.
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Substituting y = x in (2), we obtain
1F(2Az) = 2Af (@) || < 20][[|",
and hence
277 f(27H Ma) = 277N f(27a) || < 2=+ 2|17,

for all j € N, all z € X \ {0} and all A € S . Allowing j tending to infinity and
using the fact that f is additive, it is easy to see that 2f(Ax) — 2\ f(z) = 0, but this
last equation obviously also holds for = 0. Thus f(Az) = Af(z) for all z € X and
all A € S}CO. So by Lemma 2.1, the mapping f is C-linear. 0J

THEOREM 2.3. Let A be a Banach algebra and e, p, q be real numbers such that
e>0,p<0and q < 1. Assume that the mapping [ : A — A satisfies the
inequalities (2) and

Hf @) =Y as (@) | < e,

for all x,y € A\{0}. Then f is an n-Jordan derivation.
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1. Introduction

Let £ and F be two Banach spaces, and denote by B(E, F) the Banach space of all
bounded operators from £ into F. An operator T' € B(E, F) is called admissible if
ToSoT =T for some S € B(F,E). In the case where £ and F are Banach right
A-modules, 4B(&,F) denotes the closed linear subspace of B(E,F) consisting of
all right A-module morphisms. An operator T € 4B(&, F) is called a retraction if
there exists S € 4B(F,E) with T oS = Iz, and in this case F is called a retract
of & T is a coretraction if there exists S € 4B(F,E) with SoT = Ic. A Banach
right A-module J is called injective if for each Banach right A-modules £ and F,
each admissible monomorphism 7" € 4B(E, F), and each S € 4B(E,J), there exists
R € 4B(F,J) such that RoT = S. We refer the reader to the standard references
[1, 5] and [6].

The concepts of injectivity of Banach modules was introduced and studied by
Helemskii [5, 6]. Helemskii obtained an other characterization of amenabilty of
Banach algebras by homological properties.

Moreover, for a nonzero character ¢ on a Banach algebra A, the interesting
notion of ¢-amenability of A was recently introduced and studied by Kaniuth, Lau
and Pym [9] and simultaneously by Monfared [11]; See also [2, 7, 10] and [12].
Precisely, A is ¢-amenable if there is a complex-valued invariant ¢-mean on A*;
that is, a bounded linear functional m : A* — C such that

m(¢) =1 and m(f-a)=m(f)o(a),

for all a € A and f € A*, where f-a € A* is defined by (f - a)(b) = f(ab) for all
b € A. The notion of ¢-amenability is a generalization of left amenability of the
class of F-algebras £ studied in Lau [15] in 1983, known as Lau algebras; see Pier
[14].

The second author in [12] characterized the injectivity of some Banach .A-
modules in terms of the existance of complex-valued invariant mean, see also [13].
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In [3], for a bounded nonzero homorphism ® from a Banach algebra A into W*-
algebra M, the notion of vector-valued invariant means on spaces of bounded linear
maps was introduced and studied by the authors and R. Nasr-Isfahani, which was
considerably more general than that of complex-valued invariant ¢-means.

In [4], we have recently studied the relation between homological properties and
admitting vector-valued invariant means.

In this paper, we study the relation between the injectivity of certain Banach
right A-module and Banach right Z-module which Z is a closed ideal of A.

2. Main Results

Let A and M be Banach algebras. We denote by A(A, M) the set of all bounded
nonzero homomorphisms from A into M. Let & € A(A, M). Consider M as a
Banach right A-module under following action
w-a=wdP(a), (a€AweM).
The following definition was introduced by the authors and R. Nasr-Isfahani [3,
Definition 3.1].

DEFINITION 2.1. Let M be a W*-algebra with identity element u. For & &
A(A, M), an M-valued invariant ®-mean on B(A, M) is a bounded linear map
m : B(A, M) - M with

m(®)=u and m(7-a)=m(T)P(a),

forall T € B(A, M) and a € A; here T-a € B(A, M) is defined by (T-a)(b) = T'(ab)
for all b € A.

The following proposition was obtained in [6, I11.1.31]. We note that a Banach right
A-module X is faithful if £ - A # {0} for all £ € X'\ {0}.

PROPOSITION 2.2. Let A be a Banach algebra, and let X be a faithful Banach
right A-module. Then X is injective if and only if the canonical embedding 11 is a
coretraction of A-modules.

Let M be a Banach algebra with identity element u. Consider the canonical

embedding I : M — B(A, M) by

(w)(a) =w-a=wd(a),
for all a € A and w € M. Then II is a Banach right A-module morphism. We note
that II(u) is equal to ®.

The following theorem is proved in [4, Theorem 3.2]. Let us note that if & €
A(A, M) is epimorphism, then the Banach right A-module M is faithful; in fact,
t 0 # w € M. Since, ® is epimorphism, there exists an element ag € A with
(ap) = u and so,

ARe)

w-ag =wd(ag) =w # 0.

THEOREM 2.3. Let A be a Banach algebra, let M be a Banach algebra with
identity element u and let ® € A(A, M) be an epimorphism. Then the following
statements are equivalent.

1) A admits an M-valued invariant ®-mean on B(A, M).
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2) M is a coretract of B(A, M) with respect to I1.
3) The Banach right A-module M 1is injective.

Let A and M be Banach algebras and let Z be a closed ideal of A. Let & €
A(A, M). Then M is a Banach right Z-module under following action
w-i=wdlz(i), ((€l,weM).
Now, we can present the main result in this paper,
PROPOSITION 2.4. Let A be a Banach algebra and let M be a Banach algebra

with identity element u. Let T be a closed ideal of A and let ® € A(A, M) be
epimorphism and u € Im(®|z). Then the following statements are equivalent:

1) The Banach right A-module M is injective.
2) The Banach right T-module M is injective.

PROOF. Since u € Im(®|7), it follows that there is ¢y € Z with ®(0) = wu.
(i)=(ii). Suppose that M is injective as a Banach right A-module. Then by
Theorem 2.3, There is an M-valued invariant ®-mean on B(A, M). For each S €
B(Z, M), define S4 : A — M, by
Sa(a) = S(at),
for all @ € A. Let mzr : B(Z, M) — M be defined by
mz(5) = m(Sa),
for all S € B(Z, M). Since for each S € B(Z, M) and a,b € Z, we have
(S-a)a(b) = (S -a)(by) = S(abiy) = Sa(ab) = (S4 - a)(b),
it follows that
mz (S - a) —mz(S)P|z(a) = m((S - a)a) — m(S4)®P|z(a)
= mz(5)®|z(a) — mz(S)P|z(a)
=0.
Furthermore
(Plr)ala) = @lz(aw) = P(aw) = P(a),
for all @ € A. So,
mz(®|z) = m((®[r)4) = m(P) = u.

Thus, mz is an M-valued invariant ®|z-mean on B(Z, M). Let us remark that the
Banach right Z-module M with w - i = w®|z(¢) for all i € Z and w € M is faithful;
indeed, for all w # 0, w - 19 = wP(19) = w # 0. So, Theorem 2.3 shows that M is
injective as right Z-module.

(ii)=-(i). Suppose that the Banach right Z-module M with w - i = w®|7(7) is
injective. So, by Theorem 2.3, there exists an M-valued invariant ®|z-mean mz on
B(Z, M). We define the map m € B(B(A, M), M) by

m(7T) = mz(T|z),
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for all T € B(A,M). We show that m is an M-valued invariant ®-mean on
B(A, M). Clearly m(®) = u. Since for each T' € B(A, M) and a € A, (T-a)|z-to =
T|z - atp, we obtain

m(T" - a) = mz((T - a)|z)
(T a)lz)®(wo)

mz(
myz(
mz((T - a)lz - w)
mz(
mz(

Tz - atp)
T|7)P(aw)
= mgz(T|7)®(a)
=m(T)®(a),

thereforethe result follows from Theorem 2.3. O
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