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Abstract. This paper deals with some results in generalized convex spaces. The notion of

minimal generalized convex space is introduced and then two well known results in nonlinear

analysis, that is the open and closed versions of Fan-KKM principle in this new setting are

considered. Indeed, it is shown that, for any m-closed(m-open) valued KKM map F : D ⊸ X

in a minimal generalized convex space (X,D,Γ), {F (z) : z ∈ D} has the finite intersection

property.
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1. Introduction

The Fan-KKM principle provides a foundation for many of the modern essential results in
diverse areas of mathematical sciences; for details see [7]. Many problems in nonlinear analysis
can be solved by the nonemptyness of the intersection of certain family of subsets of an underlying
set. Each point of the intersection can be a fixed point, a coincidence point, an equilibrium point,
a saddle point, an optimal point, or others of the corresponding problem under consideration. The
first result on the nonempty intersection was the celebrated Knaster-Kuratowski-Mazurkiewicz
theorem (simply, the KKM principle) in [5], which is concerned with certain types of multimaps
called the KKM maps.

At the present paper the notion of minimal generalized convex space is introduced and two
principle results for KKM maps in these new spaces have been proved. In fact, it is shown that,
for any m-closed (m-open) valued KKM map F : D ⊸ X on a minimal generalized convex space,
{F (z) : z ∈ D} has the finite intersection property. The results of this paper are adapted from
[1, 2] with some slight modifications and rearrangements.
The concepts of minimal structures and minimal spaces, as a generalization of topology and topo-
logical spaces were introduced in [6].

A family M ⊆ P(X) is said to be a minimal structure on X if ∅, X ∈ M. In a minimal space
(X,M), A ∈ P(X) is said to be an m-open set if A ∈ M and also B ∈ P(X) is an m-closed set if
Bc ∈ M. We set m−Int(A) =

∪
{U : U ⊆ A,U ∈ M} and m−Cl(A) =

∩
{F : A ⊆ F, F c ∈ M}.

Definition 1.1. Let (X,M) and (Y,N ) be two minimal spaces. A function f : (X,M) →
(Y,N ) is called minimal continuous (briefly m-continuous) if f−1(U) ∈ M for any U ∈ N .

Definition 1.2. Consider a minimal space (X,M) and a nonempty subset Y of X. There
is a weakest minimal structure on Y say N , such that the inclusion map i : (Y,N ) → (X,M) is
m-continuous. In fact, N = {U ∩ Y : U ∈ M}. We call N the induced minimal structure by M
on Y and it is denoted by M|Y .

Definition 1.3. For a minimal space (X, ),

(a) a family of m-open sets = {Aj : j ∈ J} in X is called an m-open cover of K if K ⊆
∪

j Aj .
Any subfamily of which is also an m-open cover of K is called a subcover of for K;

(b) a subset K of X is m-compact whenever given any m-open cover of K has a finite subcover.
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Definition 1.4. For two minimal spaces (X, ) and (Y, ) we define minimal product structure
for X × Y as follows :

× = {A ⊆ X × Y : ∀ (x, y) ∈ A, ∃U ∈, ∃V ∈; (x, y) ∈ U × V ⊆ A}.

Definition 1.5. A linear minimal structure on a vector space X over the complex field F is
a minimal structure on X such that the two mappings

+ : X ×X → X, (x, y) 7→ x+ y

. : F×X → X, (t, x) 7→ tx

arem-continuous, where F has the usual topology and both F×X andX×X have the corresponding
product minimal structures. A linear minimal space (or minimal vector space) is a vector space
together with a linear minimal structure.

Obviously, any topological vector space is a minimal vector space. In the following, it is shown
that there is some linear minimal spaces which are not topological vector space.

Example 1.6. Consider the real field R. Clearly = {(a, b) : a, b ∈ R ∪ {±∞}} is a minimal
structure on R. We claim that is a linear minimal structure on R. For this, we must prove that,
two operations + and · are m-continuous. Suppose (x0, y0) ∈ +−1(a, b) and so x0 + y0 ∈ (a, b).
Put ϵ = min{x0 + y0 − a, b − (x0 + y0)} and so x0 ∈ (x0 − ϵ

2 , x0 +
ϵ
2 ) and y0 ∈ (y0 − ϵ

2 , y0 +
ϵ
2 ).

Hence,

x0 + y0 ∈ ((x0 −
ϵ

2
, x0 +

ϵ

2
) + (y0 −

ϵ

2
, y0 +

ϵ

2
)) ⊆ (a, b);

which implies that +−1(a, b) is m-open in the minimal product space R × R; that is + is m-
continuous. Also, suppose (α0, x0) ∈ ·−1(a, b). Since α0x0 ∈ (a, b) and lims,t→0(α0 − s)(x0 −
t) = α0x0, so one can find some 0 < δ for which | α0 − s |< δ and | x0 − t |< δ imply that
a < (α0−s)(x0− t) < b. Therefore, (α0, x0) ∈ (α0−δ, α0+δ) · (x0−δ, x0+δ) ⊆ (a, b); i.e., ·−1(a, b)
is m-open in the minimal product space R×R, which implies that the operation · is m-continuous.

2. Minimal Generalized Convex Space and KKM Theorems

Park and Kim introduced the concept of generalized convex space in 1993 [8]. Although this new
concept generalizes topological vector space, it was mainly developed in connection with fixed point
theory and KKM theory. Before the main definition, we present some details as the following:

A multimap F : X ⊸ Y is a function from a set X into the power set of Y ; that is, a function
with the values F (x) ⊆ Y for all x ∈ X and F−(y) = {x ∈ X : y ∈ F (x)} is a fiber for any y ∈ Y .
Given A ⊆ X, set

F (A) =
∪
x∈A

F (x).

Let ⟨D⟩ denote the set of all nonempty finite subsets of a set D and let ∆n be the n-simplex
with vertices e0, e1, · · ·, en, ∆J be the face of ∆n corresponding to J ∈ ⟨A⟩ where A ∈; for example,
if A = {a0, a1, · · ·, an} and J = {ai0 , ai1 , · · ·, aik} ⊆ A, then ∆J = co{ei0 , ei1 , · · ·, eik}. A generalized
convex space (briefly G-convex space) (X,D,Γ) consists of a topological space X, a nonempty set
D, and a multimap Γ : ⟨D⟩ ⊸ X such that for each A ∈ ⟨D⟩ with cardinality n+ 1, there exists a
continuous function ϕA : ∆nΓA := Γ(A) for which J ∈ ⟨A⟩ implies that ϕA(∆J) ⊆ ΓJ = Γ(J).

Definition 2.1. A minimal generalized convex space (briefly MG-convex space) (X,D,Γ)
consists of a minimal space (X, ), a nonempty set D, and a multimap Γ : ⟨D⟩ ⊸ X in which for
A ∈ ⟨D⟩ with n + 1 elements, there exists a (τ,m)-continuous function ϕA : ∆nΓA := Γ(A) for
which J ∈ ⟨A⟩ implies that ϕA(∆J) ⊆ ΓJ = Γ(J). In case to emphasize X ⊇ D, (X,D,Γ) will
be denoted by (X ⊇ D,Γ); and if X = D, then (X ⊇ X; Γ) by (X,Γ). For a G-convex space
(X ⊇ D,Γ), a subset Y ⊆ X is said to be MG-convex if N ∈ ⟨D⟩ and N ⊆ Y imply that ΓN ⊆ Y .

Clearly, any G-convex space is an MG-convex space. In the following by using an arbitrary
minimal vector space, we construct an MG-convex space which is not a G-convex space.
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Example 2.2. Suppose (X, ) is a minimal vector space which is not a topological vector
space. Consider the multimap Γ : ⟨X⟩ ⊸ X defined by Γ({a0, a1, · · ·, an}) = {Σn

i=0λiai : 0 ≤ λi ≤

1,Σn
i=0λi = 1}. For A ∈ ⟨X⟩ with | A |= n+1 define ψ : Rn+1 −→ X by ψ(λ0, λ1, ···, λn) =

n∑
i=0

λiai.

We claim that ψ is (τ,m)-continuous. To see this, suppose U is an m-open set, we must show that
ψ−1(U) is open in Rn+1. If (λ0, λ1, · · ·, λn) ∈ ψ−1(U), then λ0a0+λ1a1+ · · ·+λnan ∈ U . Since +
and · are m-continuous, so there are open sets D0, D1, · · ·, Dn ⊆ R and m-open sets V0, V1, · · ·, Vn
in X with λi ∈ Di and ai ∈ Vi for i = 0, 1, · · ·, n in which

D0 · V0 +D1 · V1 + · · ·+Dn · Vn ⊆ U.

Therefore, (λ0, λ1, · · ·, λn) ∈ D0 ×D1 ×D2 × · · · ×Dn ⊆ ψ−1(U) which implies that ψ is (τ,m)-
continuous. Now it is not hard to see that the function ϕA : ∆n −→ ΓA defined by ϕA = ψ|∆n is
also (τ,m)-continuous. One can deduce that (X,Γ) is a minimal generalized convex space.

Definition 2.3. Suppose (X,D,Γ) is an MG-convex space and Y is a minimal space. A
multimap F : D ⊸ X is called a KKM multimap if ΓA ⊆ F (A) for any A ∈. F : X ⊸ Y is said
to have the minimal KKM property (briefly MKKM property) if, for any multimap G : D ⊸ Y
with m-closed (resp. m-open) values satisfying

F (ΓA) ⊆ G(A) for all A ∈ ⟨D⟩,
the family {G(z)}z∈D has the finite intersection property. Set

MKKM(X,Y ) = {F : X ⊸ Y : F has the MKKM property}.
MKKMC(X,Y ) denotes the classMKKM form-closed valued multimapsG and alsoMKKMO(X,Y )
for m-open valued multimaps G.

Theorem 2.4. (Fan-KKM Principle) Suppose D is the set of vertices of an n-simplex ∆n

and also suppose that the multimap F : D ⊸ ∆n is a closed valued KKM map. Then
∩

z∈D

F (z) ̸= ∅.

The following is the main result of this paper.

Theorem 2.5. Suppose (X,D,Γ) is an MG-convex space and F : D ⊸ X is a multimap
satisfying

(a) F has m-closed values,

(b) F is a KKM map.
Then {F (z) : z ∈ D} has the finite intersection property.
Further, if

(c)
∩

z∈M F (z) is m-compact for some M ∈ ⟨D⟩,
then

∩
z∈D

F (z) ̸= ∅.

Proof. Assume N = {a0, a1, ···, an} ∈. There is a (τ,m)-continuous function ϕN : ∆n −→ ΓN ,
where

ϕN (co{ei0 , ei1 , · · ·, eik}) ⊆ Γ({ai0 , ai1 , · · ·, aik}) ∩ ϕN (∆n)

satisfies for any choice 0 ≤ i0 < · · · < ik ≤ n. Since F is a KKM map, so

co{ei0 , ei1 , · · ·, eik} ⊆ ϕ−1
N (Γ({ai0 , ai1 , · · ·, aik}) ∩ ϕN (∆n))

⊆
k∪

j=0

ϕ−1
N (F (aij ) ∩ ϕN (∆n)).

Therefore, the multimap ϕ : ∆n ⊸ ∆n defined by ϕ(ei) = ϕ−1
N (F (ai)∩ϕN (∆n)) is a KKM map on

{e0, e1, · · ·, en}. It follows from Definition 1.2 and (a) that F (aij )∩ϕN (∆n) is m-closed in ϕN (∆n)

and so ϕ−1
N (F (aij ) ∩ ϕN (∆n)) is closed in ∆n. Now, Theorem 2.4 implies that

n∩
i=0

ϕ−1
N (F (ai) ∩ ϕN (∆n)) ̸= ∅,
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and clearly
∩n

i=0 F (ai) ̸= ∅.
For the second part, on the contrary suppose

∩
z∈D F (z) = ∅; i.e.,∩

z∈M

F (z) ∩
∩

z∈D\M

F (z) = ∅, and so
∩
z∈M

F (z) ⊆ (
∩

z∈D\M

F (z))c =
∪

z∈D\M

F (z)c.

According to (c) there is N ∈ ⟨D \M⟩ for which
∩

z∈M F (z) ⊆
∪

z∈N F (z)c, and hence∩
z∈M∪N

F (z) = ∅.

This contradicts with the fact that {F (z) : z ∈ D} has the finite intersection property.
The following result also holds:

Theorem 2.6. Suppose (X,D,Γ) is an MG-convex space and F : D ⊸ X a multimap such
that

(a)
∩

z∈Dm− Cl(F (z)) =
∩

z∈D F (z),

(b) m− Cl(F ) is a KKM map,

(c)
∩

z∈M m− Cl(F (z)) is m-compact for some M ∈ ⟨D⟩,
(d) the minimal structure of X has the property U .

Then
∩

z∈D

F (z) ̸= ∅.

The open version of the Fan-KKM principle (Theorem 2.4) was presented by Kim [4].

Theorem 2.7. (Open version of the Fan-KKM Principle ) Suppose D is the set of
vertices of an n-simplex ∆n and also suppose that the multimap F : D ⊸ ∆n is an open valued
KKM map. Then

∩
z∈D F (z) ̸= ∅.

Theorem 2.8. Suppose (X,D,Γ) is an MG-convex space and F : D ⊸ X a multimap satis-
fying

(a) F has m-open values,

(b) F is a KKM map.
Then {F (z) : z ∈ D} has the finite intersection property.
Further, if

(c)
∩

z∈N m− Cl(F (z)) is m-compact for some N ∈ ⟨D⟩,
(d) minimal space (X, ) has the property U ,

then
∩

z∈D

m− Cl(F (z)) ̸= ∅.

Remark 2.9. It should be noticed that, Theorem 2.5 and Theorem 2.8 are extended versions
of Theorem 1 in [7] and hence a generalization of Ky Fan’s lemma [3].
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